WP1.PD: Machine Learning Theory and Algorithms for Image Processing I
Wed, 11 Oct, 14:30 - 16:00 Malaysia Time (UTC +8)
Location: Poster Area D
Session Type: Poster
Session Chair: Thomas Richter, Fraunhofer HHI
Track: Applications of Machine Learning
Click the to view the manuscript on IEEE Xplore Open Preview
 

WP1.PD.1: METAGRAD: ADAPTIVE GRADIENT QUANTIZATION WITH HYPERNETWORKS

Kaixin Xu, A*STAR, Singapore; Alina Hui Xiu Lee, National University of Singapore, Singapore; Ziyuan Zhao, Zhe Wang, Min Wu, A*STAR, Singapore; Weisi Lin, Nanyang Technological University, Singapore
 

WP1.PD.2: DFT-CAM: DISCRETE FOURIER TRANSFORM DRIVEN CLASS ACTIVATION MAP

Yangyang Wang, Filiz Bunyak, University of Missouri-Columbia, United States of America
 

WP1.PD.3: CROSS-LAYER PATCH ALIGNMENT AND INTRA-AND-INTER PATCH RELATIONS FOR KNOWLEDGE DISTILLATION

Yi Zhang, Xi'an Jiaotong University, China; Yingke Gao, China Academy of Space Technology, China; Haonan Zhang, Xinyu Lei, Longjun Liu, Xi'an Jiaotong University, China
 

WP1.PD.5: CAN WE DISTILL KNOWLEDGE FROM POWERFUL TEACHERS DIRECTLY?

Chengyao Qian, Munawar Hayat, Mehrtash Harandi, Monash University, Australia
 

WP1.PD.6: FALSE CORRESPONDENCE REMOVAL VIA REVISITING SEMANTIC CONTEXT WITH POSITION-ATTENTIVE LEARNING

Ruiyuan Li, Zhaolin Xiao, Meng Zhang, Haonan Su, Haiyan Jin, Xi'an University of Technology, China
 

WP1.PD.7: LEARNING TO DRAW THROUGH A MULTI-STAGE ENVIRONMENT MODEL BASED REINFORCEMENT LEARNING

Ji Qiu, Peng Lu, Beijing University of Posts and Telecommunications, China; Xujun Peng, Amazon Alexa AI, United States of America
 

WP1.PD.8: DODGING THE DOUBLE DESCENT IN DEEP NEURAL NETWORKS

Victor Quetu, Enzo Tartaglione, LTCI, Télécom Paris, Institut Polytechnique de Paris, France
 

WP1.PD.9: LKBQ: PUSHING THE LIMIT OF POST-TRAINING QUANTIZATION TO EXTREME 1 BIT

Tianxiang Li, Tsinghua University, China; Bin Chen, Harbin Institute of Technology, China; QianWei Wang, Yujun Huang, ShuTao Xia, Tsinghua University, China
 

WP1.PD.10: INFERENCE ACCELERATION OF DEEP LEARNING CLASSIFIERS BASED ON RNN

Fekhr Eddine Keddous, University Paris Est Créteil, Laboratoire LISSI / Cyclope.ai, France; Nadiya Shvai, Cyclope.ai, France; Arcadi Llanza, Amir Nakib, University Paris Est Créteil, Laboratoire LISSI / Cyclope.ai, France

WP1.PD.12: A Gradient Boosting Approach for Training Convolutional and Deep Neural Networks

Seyedsaman Emami, Gonzalo Martinez-Munoz, Escuela Politécnica Superior