Technical Program

Click on the icon to view the manuscript on IEEE XPlore in the IEEE ICIP 2020 Open Preview.

TEC-04: Machine Learning for Image and Video Processing II

Interactive Q&A Time: Monday, 26 October, 18:30 - 19:25
Virtual Session: View on Virtual Platform
Session Chairs: Anil Kokaram, Trinity College Dublin and Ton Kalker, XPERI
 
 TEC-04.1: EXAGGERATED LEARNING FOR CLEAN-AND-SHARP IMAGE RESTORATION
         Chang Liu; Shanghai Jiao Tong University
         Qifan Gao; Shanghai Jiao Tong University
         Xiaolin Wu; McMaster University
 
 TEC-04.2: TRADITIONAL METHOD INSPIRED DEEP NEURAL NETWORK FOR EDGE DETECTION
         Jan Kristanto Wibisono; National Chiao Tung University
         Hsueh-Ming Hang; National Chiao Tung University
 
 TEC-04.3: MULTI-STEP QUANTIZATION OF A MULTI-SCALE NETWORK FOR CROWD COUNTING
         Kyujin Shim; Korea Advanced Institute of Science and Technology (KAIST)
         Junyoung Byun; Korea Advanced Institute of Science and Technology (KAIST)
         Changick Kim; Korea Advanced Institute of Science and Technology (KAIST)
 
 TEC-04.4: BOOSTING IMAGE-BASED LOCALIZATION VIA RANDOMLY GEOMETRIC DATA AUGMENTATION
         Yiming Wan; NLPR, Institute of Automation, Chinese Academy of Sciences
         Wei Gao; NLPR, Institute of Automation, Chinese Academy of Sciences
         Sheng Han; NLPR, Institute of Automation, Chinese Academy of Sciences
         Yihong Wu; NLPR, Institute of Automation, Chinese Academy of Sciences
 
 TEC-04.5: A NOVEL CENTROID UPDATE APPROACH FOR CLUSTERING-BASED SUPERPIXEL METHODS AND SUPERPIXEL-BASED EDGE DETECTION
         Houwang Zhang; China University of Geosciences
         Chong Wu; City University of Hong Kong
         Le Zhang; Tongji University
         Hanying Zheng; China University of Geosciences
 
 TEC-04.6: LOSS RESCALING BY UNCERTAINTY INFERENCE FOR SINGLE-STAGE OBJECT DETECTION
         Yan Li; NEC Laboratories, China
         Xiaoyi Chen; NEC Laboratories, China
         Li Quan; NEC Laboratories, China
         Ni Zhang; NEC Laboratories, China
 
 TEC-04.7: GAPNET: GENERIC-ATTRIBUTE-POSE NETWORK FOR FINE-GRAINED VISUAL CATEGORIZATION USING MULTI-ATTRIBUTE ATTENTION MODULE
         Minjeong Ju; Korea Advanced Institute of Science and Technology (KAIST)
         Hobin Ryu; Korea Advanced Institute of Science and Technology (KAIST)
         Sangkeun Moon; Korea Electric Power Corporation (KEPCO) Research Institute
         Chang D. Yoo; Korea Advanced Institute of Science and Technology (KAIST)
 
 TEC-04.8: DESHUFFLEGAN: A SELF-SUPERVISED GAN TO IMPROVE STRUCTURE LEARNING
         Gulcin Baykal; Istanbul Technical University
         Gozde Unal; Istanbul Technical University
 
 TEC-04.9: SUBSET SAMPLING FOR PROGRESSIVE NEURAL NETWORK LEARNING
         Dat Thanh Tran; Tampere University
         Moncef Gabbouj; Tampere University
         Alexandros Iosifidis; Aarhus University
 
 TEC-04.10: EFFICIENT DETECTION OF PIXEL-LEVEL ADVERSARIAL ATTACKS
         Syed Afaq Ali Shah; Murdoch University
         Moise Bougre; ENSEA
         Naveed Akhtar; University of Western Australia
         Mohammed Bennamoun; University of Western Australia
         Liang Zhang; Xidian University
 
 TEC-04.11: HIERARCHICAL MODEL FOR LONG-LENGTH VIDEO SUMMARIZATION WITH ADVERSARIALLY ENHANCED AUDIO/VISUAL FEATURES
         Hansol Lee; Seoul National University of Science and Technology
         Gyemin Lee; Seoul National University of Science and Technology
 
 TEC-04.12: ROBUST ADVERSARIAL LEARNING FOR SEMI-SUPERVISED SEMANTIC SEGMENTATION
         Jia Zhang; Guangxi Normal University
         Zhixin Li; Guangxi Normal University
         Canlong Zhang; Guangxi Normal University
         Huifang Ma; Northwest Normal University
 
 TEC-04.13: INPUT DROPOUT FOR SPATIALLY ALIGNED MODALITIES
         Sébastien de Blois; Université Laval
         Mathieu Garon; Université Laval
         Christian Gagné; Université Laval
         Jean-François Lalonde; Université Laval
 
 TEC-04.14: SELF-SUPERVISED LEARNING OF DEPTH AND POSE USING CYCLE GENERATIVE ADVERSARIAL NETWORK
         Yunhe Tong; Peking University
         Anjie Wang; Peking University
         Songchao Tan; Peking University
         Shanshe Wang; Peking University
         Siwei Ma; Peking University
         Wen Gao; Peking University
 
 TEC-04.15: WEAKLY-SUPERVISED DEFECT SEGMENTATION WITHIN VISUAL INSPECTION IMAGES OF LIQUID CRYSTAL DISPLAYS IN ARRAY PROCESS
         Fan Li; IBM
         Guoqiang Hu; IBM
         Shengnan Zhu; IBM
 
 TEC-04.16: ATTENTION SELECTIVE NETWORK FOR FACE SYNTHESIS AND POSE-INVARIANT FACE RECOGNITION
         Jiashu Liao; University of Warwick
         Alex Kot; Nanyang Technological University
         Tanaya Guha; University of Warwick
         Victor Sanchez; University of Warwick
 
 TEC-04.17: CONTINUAL LEARNING OF PREDICTIVE MODELS IN VIDEO SEQUENCES VIA VARIATIONAL AUTOENCODERS
         Damian Campo; University of Genova
         Giulia Slavic; University of Genova
         Mohamad Baydoun; University of Genova
         Lucio Marcenaro; University of Genova
         Carlo Regazzoni; University of Genova
 
 TEC-04.18: CHANNEL--SPATIAL FUSION AWARE NET FOR ACCURATE AND FAST OBJECT DETECTION
         Linhuang Wu; Fuzhou University
         Xiujun Yang; Fuzhou University
         Zhenjia Fan; Fuzhou University
         Chunjun Wang; University of Chicago
         Zhifeng Chen; Fuzhou University
 
 TEC-04.19: UNPRIORTIZED AUTOENCODER FOR IMAGE GENERATION
         Jaeyoung Yoo; Seoul National University
         Hojun Lee; Seoul National University
         Nojun Kwak; Seoul National University
 
 TEC-04.20: FEATURE ENHANCEMENT AND FUSION FOR IMAGE-BASED PARTICLE MATTER ESTIMATION WITH F-MSE LOSS
         Xiaoyu Wang; Northwest University
         Lei Zhang; Northwest University
         Qirong Bo; Northwest University
         Jun Feng; Northwest University
         Jingzhao Hu; Northwest University
         Yuxin Kang; Northwest University
         Jing Zhang; Lamar University
 
 TEC-04.21: DEEP MULTIMODAL SPARSE REPRESENTATION-BASED CLASSIFICATION
         Mahdi Abavisani; Rutgers University
         Vishal M. Patel; Johns Hopkins University