SS-L21: Variational Inference and Approximate Bayesian Techniques
Fri, 19 Apr, 08:20 - 10:20 (UTC +9)
Location: Room E8
Session Type: Lecture
Session Co-Chairs: Dirk Slock, EURECOM and Sergios Theodoridis, Aalborg University
Track: Special Sessions
Click the to view the manuscript on IEEE Xplore Open Preview
Fri, 19 Apr, 08:20 - 08:40 (UTC +9)
SS-L21.1: DECENTRALIZED GENERALIZED APPROXIMATE MESSAGE-PASSING FOR TREE-STRUCTURED NETWORKS
Fri, 19 Apr, 08:40 - 09:00 (UTC +9)
SS-L21.2: Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian Process State-Space Models
Fri, 19 Apr, 09:00 - 09:20 (UTC +9)
SS-L21.3: INFERENCE OF GENETIC EFFECTS VIA APPROXIMATE MESSAGE PASSING
Fri, 19 Apr, 09:20 - 09:40 (UTC +9)
SS-L21.4: VECTOR APPROXIMATE MESSAGE PASSING FOR NOT SO LARGE N.I.I.D. GENERALIZED I/O LINEAR MODELS
Fri, 19 Apr, 09:40 - 10:00 (UTC +9)
SS-L21.5: BAYESIAN LEARNING-BASED KALMAN SMOOTHING FOR LINEAR DYNAMICAL SYSTEMS WITH UNKNOWN SPARSE INPUTS
Fri, 19 Apr, 10:00 - 10:20 (UTC +9)