Technical Program

Click on the icon to view the manuscript on IEEE XPlore in the IEEE ICASSP 2020 Open Preview.

SS-L11: Neural and Audio Signal Processing for Hearing Devices

Session Type: Lecture
Time: Wednesday, 6 May, 11:30 - 13:30
Location: On-Demand
Virtual Session: View on Virtual Platform
Session Chairs: Simon Doclo, University of Oldenburg and Cluster of Excellence Hearing4all and Waldo Nogueira, University of Oldenburg and Cluster of Excellence Hearing4all
 
 SS-L11.1: IMPROVING AUDITORY ATTENTION DECODING PERFORMANCE OF LINEAR AND NON-LINEAR METHODS USING STATE-SPACE MODEL
         Ali Aroudi; University of Oldenburg
         Tobias de Taillez; University of Oldenburg
         Simon Doclo; University of Oldenburg
 
 SS-L11.2: TOWARDS DECODING SELECTIVE ATTENTION FROM SINGLE-TRIAL EEG DATA IN COCHLEAR IMPLANT USERS BASED ON DEEP NEURAL NETWORKS
         Waldo Nogueira; Medical University Hannover
         Hanna Dolhopiatenko; Medical University Hannover
 
 SS-L11.3: HARMONIC/PERCUSSIVE SOUND SEPARATION AND SPECTRAL COMPLEXITY REDUCTION OF MUSIC SIGNALS FOR COCHLEAR IMPLANT LISTENERS
         Benjamin Lentz; Ruhr-Universität Bochum
         Anil Nagathil; Ruhr-Universität Bochum
         Johannes Gauer; Ruhr-Universität Bochum
         Rainer Martin; Ruhr-Universität Bochum
 
 SS-L11.4: BIO-MIMETIC ATTENTIONAL FEEDBACK IN MUSIC SOURCE SEPARATION
         Ashwin Bellur; LCAP, Johns Hopkins University
         Mounya Elhilali; LCAP, Johns Hopkins University
 
 SS-L11.5: TALKER-INDEPENDENT SPEAKER SEPARATION IN REVERBERANT CONDITIONS
         Masood Delfarah; Ohio State University
         Yuzhou Liu; Ohio State University
         DeLiang Wang; Ohio State University
 
 SS-L11.6: EVALUATION OF JOINT AUDITORY ATTENTION DECODING AND ADAPTIVE BINAURAL BEAMFORMING APPROACH FOR HEARING DEVICES WITH ATTENTION SWITCHING
         Wenqiang Pu; Shenzhen Research Institute of Big Data, Chinese University of Hong Kong, Shenzhen
         Peng Zan; University of Maryland
         Jinjun Xiao; Starkey Hearing Technologies
         Tao Zhang; Starkey Hearing Technologies
         Zhi-Quan Luo; Shenzhen Research Institute of Big Data, Chinese University of Hong Kong, Shenzhen