Technical Program

Click on the icon to view the manuscript on IEEE XPlore in the IEEE ICASSP 2020 Open Preview.

SS-L18: Anomaly Detection and Intent Inference in Object Tracking

Session Type: Lecture
Time: Thursday, 7 May, 11:30 - 13:30
Location: On-Demand
Virtual Session: View on Virtual Platform
Session Chair: Peter Willett, University of Connecticut
 
 SS-L18.1: INFERRING DYNAMIC GROUP LEADERSHIP USING SEQUENTIAL BAYESIAN METHODS
         Qing Li; University of Cambridge
         Simon Godsill; University of Cambridge
         Jiaming Liang; University of Cambridge
         Bashar Ahmad; University of Cambridge
 
 SS-L18.2: SCALABLE DETECTION AND TRACKING OF EXTENDED OBJECTS
         Florian Meyer; University of California, San Diego
         Jason L. Williams; Commonwealth Scientific and Industrial Research Organisation
 
 SS-L18.3: ADVERSARIAL ANOMALY DETECTION FOR MARKED SPATIO-TEMPORAL STREAMING DATA
         Shixiang Zhu; Georgia Institute of Technology
         Henry Shaowu Yuchi; Georgia Institute of Technology
         Yao Xie; Georgia Institute of Technology
 
 SS-L18.4: QUICKEST DETECTION OF GROWING DYNAMIC ANOMALIES IN NETWORKS
         Georgios Rovatsos; University of Illinois at Urbana-Champaign
         Venugopal Veeravalli; University of Illinois at Urbana-Champaign
         Don Towsley; University of Massachusetts, Amherst
         Ananthram Swami; Army Research Lab
 
 SS-L18.5: IMAGE SEGMENTATION BASED PRIVACY-PRESERVING HUMAN ACTION RECOGNITION FOR ANOMALY DETECTION
         Jiawei Yan; Newcastle University
         Federico Angelini; Newcastle University
         Syed Mohsen Naqvi; Newcastle University
 
 SS-L18.6: PREDICTION OF VESSEL TRAJECTORIES FROM AIS DATA VIA SEQUENCE-TO-SEQUENCE RECURRENT NEURAL NETWORKS
         Nicola Forti; NATO STO Centre for Maritime Research and Experimentation
         Leonardo M. Millefiori; NATO STO Centre for Maritime Research and Experimentation
         Paolo Braca; NATO STO Centre for Maritime Research and Experimentation
         Peter Willett; University of Connecticut