Technical Program

Click on the icon to view the manuscript on IEEE XPlore in the IEEE ICASSP 2020 Open Preview.

SPTM-L7: Bayesian Signal Processing II

Session Type: Lecture
Time: Friday, 8 May, 11:45 - 13:45
Location: On-Demand
Virtual Session: View on Virtual Platform
Session Chair: Marcelo Bruno, Instituto Tecnológico de Aeronáutica
 
 SPTM-L7.1: APPROXIMATE BAYESIAN COMPUTATION WITH THE SLICED-WASSERSTEIN DISTANCE
         Kimia Nadjahi; Telecom Paris
         Valentin De Bortoli; Ecole normale supérieure Paris-Saclay
         Alain Durmus; Ecole normale supérieure Paris-Saclay
         Roland Badeau; Telecom Paris
         Umut Simsekli; Telecom Paris and University of Oxford
 
 SPTM-L7.2: ENHANCED MIXTURE POPULATION MONTE CARLO VIA STOCHASTIC OPTIMIZATION AND MARKOV CHAIN MONTE CARLO SAMPLING
         Yousef El-Laham; Stony Brook University
         Petar Djuric; Stony Brook University
         Mónica F. Bugallo; Stony Brook University
 
 SPTM-L7.3: BETTER SAFE THAN SORRY: RISK-AWARE NONLINEAR BAYESIAN ESTIMATION
         Dionysios Kalogerias; University of Pennsylvania
         Luiz Chamon; University of Pennsylvania
         George Pappas; University of Pennsylvania
         Alejandro Ribeiro; University of Pennsylvania
 
 SPTM-L7.4: PARTICLE FILTERING ON THE COMPLEX STIEFEL MANIFOLD WITH APPLICATION TO SUBSPACE TRACKING
         Claudio Bordin; Universidade Federal do ABC
         Marcelo Bruno; Instituto Tecnológico de Aeronáutica
 
 SPTM-L7.5: BAYESIAN MULTIPLE CHANGE-POINT DETECTION WITH LIMITED COMMUNICATION
         Topi Halme; Aalto University
         Eyal Nitzan; Aalto University
         H. Vincent Poor; Princeton University
         Visa Koivunen; Aalto University
 
 SPTM-L7.6: WHAT DID YOUR ADVERSARY BELIEVE? OPTIMAL FILTERING AND SMOOTHING IN COUNTER-ADVERSARIAL AUTONOMOUS SYSTEMS
         Robert Mattila; KTH Royal Institute of Technology
         Inês Lourenço; KTH Royal Institute of Technology
         Vikram Krishnamurthy; Cornell University
         Cristian R. Rojas; KTH Royal Institute of Technology
         Bo Wahlberg; KTH Royal Institute of Technology