Technical Program

Click on the icon to view the manuscript on IEEE XPlore in the IEEE ICASSP 2020 Open Preview.

MLSP-P3: Reinforcement and Sequential Learning

Session Type: Poster
Time: Tuesday, 5 May, 16:30 - 18:30
Location: On-Demand
Virtual Session: View on Virtual Platform
Session Chair: Jie Ding, University of Minnesota
 
 MLSP-P3.1: HIERARCHICAL CACHING VIA DEEP REINFORCEMENT LEARNING
         Alireza Sadeghi; University of Minnesota
         Gang Wang; University of Minnesota
         Georgios B. Giannakis; University of Minnesota
 
 MLSP-P3.2: LEARNING NETWORK REPRESENTATION THROUGH REINFORCEMENT LEARNING
         Siqi Shen; National University of Defense Technology
         Yongquan Fu; National University of Defense Technology
         Adele Lu Jia; China Agricultural University
         Huayou Su; National University of Defense Technology
         Qinglin Wang; National University of Defense Technology
         Chengsong Wang; National University of Defense Technology
         Yong Dou; National University of Defense Technology
 
 MLSP-P3.3: ATTENTION-BASED CURIOSITY-DRIVEN EXPLORATION IN DEEP REINFORCEMENT LEARNING
         Patrik Reizinger; Budapest University of Technology and Economics
         Márton Szemenyei; Budapest University of Technology and Economics
 
 MLSP-P3.4: STABILIZING MULTI-AGENT DEEP REINFORCEMENT LEARNING BY IMPLICITLY ESTIMATING OTHER AGENTS’ BEHAVIORS
         Yue Jin; Tsinghua University
         Shuangqing Wei; Louisiana State University
         Jian Yuan; Tsinghua University
         Xudong Zhang; Tsinghua University
         Chao Wang; Tsinghua University
 
 MLSP-P3.5: QOS-AWARE FLOW CONTROL FOR POWER-EFFICIENT DATA CENTER NETWORKS WITH DEEP REINFORCEMENT LEARNING
         Penghao Sun; National Digital Switching System Engineering & Technological R&D Center
         Zehua Guo; Beijing Institute of Technology
         Sen Liu; Central South University
         Julong Lan; Central South University
         Yuxiang Hu; Central South University
 
 MLSP-P3.6: IMPROVING THE SCALABILITY OF DEEP REINFORCEMENT LEARNING-BASED ROUTING WITH CONTROL ON PARTIAL NODES
         Penghao Sun; National Digital Switching System Engineering & Technological R&D Center
         Julong Lan; National Digital Switching System Engineering & Technological R&D Center
         Zehua Guo; Beijing Institute of Technology
         Yang Xu; Fudan University
         Yuxiang Hu; National Digital Switching System Engineering & Technological R&D Center
 
 MLSP-P3.7: GENERALIZED LINEAR BANDITS WITH SAFETY CONSTRAINTS
         Sanae Amani; University of California, Santa Barbara
         Mahnoosh Alizadeh; University of California, Santa Barbara
         Christos Thrampoulidis; University of California, Santa Barbara
 
 MLSP-P3.8: FROM VIDEO GAME TO REAL ROBOT: THE TRANSFER BETWEEN ACTION SPACES
         Janne Karttunen; Karelics Oy
         Anssi Kanervisto; University of Eastern Finland
         Ville Kyrki; Aalto University
         Ville Hautamäki; University of Eastern Finland
 
 MLSP-P3.9: CORRELATED MULTI-ARMED BANDITS WITH A LATENT RANDOM SOURCE
         Samarth Gupta; Carnegie Mellon University
         Gauri Joshi; Carnegie Mellon University
         Osman Yagan; Carnegie Mellon University
 
 MLSP-P3.10: ADAPTIVE SEQUENTIAL INTERPOLATOR USING ACTIVE LEARNING FOR EFFICIENT EMULATION OF COMPLEX SYSTEMS
         Luca Martino; Universidad Rey Juan Carlos
         Daniel Heestermans Svendsen; Universitat de Valencia
         Jorge Vicent; Universitat of Valencia and Magellium Company in Geoinformation and Image Processing
         Gustau Camps-Valls; Universitat de Valencia
 
 MLSP-P3.11: CONTINUAL LEARNING FOR INFINITE HIERARCHICAL CHANGE-POINT DETECTION
         Pablo Moreno-Muñoz; Universidad Carlos III de Madrid
         David Ramírez; Universidad Carlos III de Madrid
         Antonio Artés-Rodríguez; Universidad Carlos III de Madrid