Technical Program

Click on the icon to view the manuscript on IEEE XPlore in the IEEE ICASSP 2020 Open Preview.

MLSP-L2: Optimization Algorithms I

Session Type: Lecture
Time: Wednesday, 6 May, 11:30 - 13:30
Location: On-Demand
Virtual Session: View on Virtual Platform
Session Chair: Simo Särkkä, Aalto University
 
 MLSP-L2.1: PRIMAL-DUAL STOCHASTIC SUBGRADIENT METHOD FOR LOG-DETERMINANT OPTIMIZATION
         Songwei Wu; Nanyang Technological University
         Hang Yu; Nanyang Technological University
         Justin Dauwels; Nanyang Technological University
 
 MLSP-L2.2: NEURAL NETWORK TRAINING WITH APPROXIMATE LOGARITHMIC COMPUTATIONS
         Arnab Sanyal; University of Southern California
         Peter Beerel; University of Southern California
         Keith Chugg; University of Southern California
 
 MLSP-L2.3: AUTOMATIC AND SIMULTANEOUS ADJUSTMENT OF LEARNING RATE AND MOMENTUM FOR STOCHASTIC GRADIENT-BASED OPTIMIZATION METHODS
         Tomer Lancewicki; eBay
         Selcuk Kopru; eBay
 
 MLSP-L2.4: A STUDY OF GENERALIZATION OF STOCHASTIC MIRROR DESCENT ALGORITHMS ON OVERPARAMETERIZED NONLINEAR MODELS
         Navid Azizan; California Institute of Technology
         Sahin Lale; California Institute of Technology
         Babak Hassibi; California Institute of Technology
 
 MLSP-L2.5: ON DISTRIBUTED STOCHASTIC GRADIENT DESCENT FOR NONCONVEX FUNCTIONS IN THE PRESENCE OF BYZANTINES
         Saikiran Bulusu; Syracuse University
         Prashant Khanduri; Syracuse University
         Pranay Sharma; Syracuse University
         Pramod Varshney; Syracuse University
 
 MLSP-L2.6: PRECONDITIONING ADMM FOR FAST DECENTRALIZED OPTIMIZATION
         Meng Ma; University of Minnesota
         Georgios B. Giannakis; University of Minnesota