We solve some first questions in the table of small parameters of completely regular (CR) codes in Hamming graphs $H(n,q)$. The most uplifting result is the existence of a $\{13,6,1;1,6,9\}$-CR code in $H(n,2)$, $n\ge 13$. We also establish the non-existence of a $\{11,4;3,6\}$-code and a $\{10,3;4,7\}$-code in $H(12,2)$ and $H(13,2)$. A partition of the complement of the quaternary Hamming code of length~$5$ into $4$-cliques is found, which can be used to construct completely regular codes with covering radius $1$ by known constructions. Additionally we discuss the parameters $\{24,21,10;1,4,12\}$ of a putative completely regular code in $H(24,2)$ and show the nonexistence of such a code in $H(8,4)$.