In this paper, we explore the application of semidefinite programming to the realm of quantum codes, specifically focusing on codeword stabilized (CWS) codes with entanglement assistance. Notably, we utilize the isotropic subgroup of the CWS group and the set of word operators of a CWS-type quantum code to derive an upper bound on the minimum distance. Furthermore, this characterization can be incorporated into the associated distance enumerators, enabling us to construct semidefinite constraints that lead to SDP bounds on the minimum distance or size of CWS-type quantum codes. We illustrate several instances where SDP bounds outperform LP bounds.