TU2.R6.2

New Construction of $q$-ary Codes Correcting a Burst of at most $t$ Deletions

Wentu Song, Kui Cai, Tony Quek, Singapore University of Technology and Design, Singapore

Session:
Biology: Insertions and Deletions

Track:
17: Information and Coding in Biology

Location:
Sigma/Delta

Presentation Time:
Tue, 9 Jul, 11:50 - 12:10

Session Chair:
Maël Le Treust, CNRS
Abstract
In this paper, for any fixed integer $q>2$, we construct $q$-ary codes correcting a burst of at most $t$ deletions with redundancy $\log n+8\log\log n+o(\log\log n)+\gamma_{q,t}$ bits and near-linear encoding/decoding complexity, where $n$ is the message length and $\gamma_{q,t}$ is a constant that only depends on $q$ and $t$. In previous works there are constructions of such codes with redundancy $\log n+O(\log q\log\log n)$ bits or $\log n+O(t^2\log\log n)+O(t\log q)$. The redundancy of our new construction is independent of $q$ and $t$ in the second term.
Resources