Technical Program

Click on the icon to view the manuscript on IEEE XPlore in the IEEE ICIP 2019 Open Preview.

WA.L2: Visual Tracking

Session Type: Lecture
Time: Wednesday, September 25, 10:30 - 12:18
Location: Room 103 (1F)
Session Chair: Anthony Vetro, Mitsubishi Electric Research Laboratories
 
 WA.L2.1: LIGHTWEIGHT DEEP NEURAL NETWORK FOR REAL-TIME VISUAL TRACKING WITH MUTUAL LEARNING
         Haojie Zhao; Northeastern University
         Gang Yang; Northeastern University
         Dong Wang; Dalian University of Technology
         Huchuan Lu; Dalian University of Technology
 
 WA.L2.2: LEARNING TO REMEMBER PAST TO PREDICT FUTURE FOR VISUAL TRACKING
         Sungyong Baik; Seoul National University
         Junseok Kwon; Chung-Ang University
         Kyoung Mu Lee; Seoul National University
 
 WA.L2.3: A RANKING BASED ATTENTION APPROACH FOR VISUAL TRACKING
         Shenhui Peng; Waseda University
         Sei-ichiro Kamata; Waseda University
         Toby Breckon; Durham University
 
 WA.L2.4: LEARNING CASCADED SIAMESE NETWORKS FOR HIGH PERFORMANCE VISUAL TRACKING
         Peng Gao; Harbin Institute of Technology
         Yipeng Ma; Harbin Institute of Technology
         Ruyue Yuan; Harbin Institute of Technology
         Liyi Xiao; Harbin Institute of Technology
         Fei Wang; Harbin Institute of Technology
 
 WA.L2.5: HOW EFFECTIVELY CAN INDOOR WIRELESS POSITIONING RELIEVE VISUAL TRACKING PAINS: A CRAMER-RAO BOUND VIEWPOINT
         Panwen Hu; Chinese University of Hong Kong, Shenzhen
         Zizheng Yan; Chinese University of Hong Kong, Shenzhen
         Rui Huang; Chinese University of Hong Kong, Shenzhen
         Feng Yin; Chinese University of Hong Kong, Shenzhen
 
 WA.L2.6: LEARNING HIERARCHICAL FEATURES FOR VISUAL OBJECT TRACKING WITH RECURSIVE NEURAL NETWORKS
         Li Wang; Institute for Infocomm Research (I2R)
         Ting Liu; Nanyang Technological University
         Bing Wang; Nanyang Technological University
         Jie Lin; Institute for Infocomm Research (I2R)
         Xulei Yang; Institute for Infocomm Research (I2R)
         Gang Wang; Nanyang Technological University