Login Paper Search My Schedule Paper Index Help

My ICASSP 2019 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Clicking on the Add button next to a paper title will add that paper to your custom schedule.
Clicking on the Remove button next to a paper will remove that paper from your custom schedule.

SLP-P21: Speech Separation, Enhancement and Denoising

Session Type: Poster
Time: Friday, May 17, 13:30 - 15:30
Location: Poster Area A, Ground Floor
Session Chair: Marc Delcroix, NTT Corporation
 
  SLP-P21.1: COMPACT NETWORK FOR SPEAKERBEAM TARGET SPEAKER EXTRACTION
         Marc Delcroix; NTT Corporation
         Katerina Zmolikova; BUT
         Tsubasa Ochiai; NTT Corporation
         Keisuke Kinoshita; NTT Corporation
         Shoko Araki; NTT Corporation
         Tomohiro Nakatani; NTT Corporation
 
  SLP-P21.2: USING RECURRENCES IN TIME AND FREQUENCY WITHIN U-NET ARCHITECTURE FOR SPEECH ENHANCEMENT
         Tomasz Grzywalski; StethoMe
         Szymon Drgas; Poznan University of Technology
 
  SLP-P21.3: A UNIFIED FRAMEWORK FOR NEURAL SPEECH SEPARATION AND EXTRACTION
         Tsubasa Ochiai; NTT Communication Science Laboratories
         Marc Delcroix; NTT Communication Science Laboratories
         Keisuke Kinoshita; NTT Communication Science Laboratories
         Atsunori Ogawa; NTT Communication Science Laboratories
         Tomohiro Nakatani; NTT Communication Science Laboratories
 
  SLP-P21.4: LOW-LATENCY SPEAKER-INDEPENDENT CONTINUOUS SPEECH SEPARATION
         Takuya Yoshioka; Microsoft
         Zhuo Chen; Microsoft
         Changliang Liu; Microsoft
         Xiong Xiao; Microsoft
         Hakan Erdogan; Microsoft
         Dimitrios Dimitriadis; Microsoft
 
  SLP-P21.5: FURCAX: END-TO-END MONAURAL SPEECH SEPARATION BASED ON DEEP GATED (DE)CONVOLUTIONAL NEURAL NETWORKS WITH ADVERSARIAL EXAMPLE TRAINING
         Ziqiang Shi; Fujitsu Research and Development Center
         Huibin Lin; Fujitsu Research and Development Center
         Liu Liu; Fujitsu Research and Development Center
         Rujie Liu; Fujitsu Research and Development Center
         Shoji Hayakawa; Fujitsu Laboratories Ltd
         Jiqing Han; Harbin Institute of Technology
 
  SLP-P21.6: OPTIMIZATION OF SPEAKER EXTRACTION NEURAL NETWORK WITH MAGNITUDE AND TEMPORAL SPECTRUM APPROXIMATION LOSS
         Chenglin Xu; Nanyang Technological University
         Wei Rao; National University of Singapore
         Eng Siong Chng; Nanyang Technological University
         Haizhou Li; National University of Singapore
 
  SLP-P21.7: LEARNING TO DEQUANTIZE SPEECH SIGNALS BY PRIMAL-DUAL NETWORKS: AN APPROACH FOR ACOUSTIC SENSOR NETWORKS
         Christoph Brauer; Technische Universität Braunschweig
         Ziyue Zhao; Technische Universität Braunschweig
         Dirk Lorenz; Technische Universität Braunschweig
         Tim Fingscheidt; Technische Universität Braunschweig
 
  SLP-P21.8: ARTIFICIAL BANDWIDTH EXTENSION USING A CONDITIONAL GENERATIVE ADVERSARIAL NETWORK WITH DISCRIMINATIVE TRAINING
         Jonas Sautter; Nuance Communications
         Friedrich Faubel; Nuance Communications
         Markus Buck; Nuance Communications
         Gerhard Schmidt; Kiel University
 
  SLP-P21.9: LATENT REPRESENTATION LEARNING FOR ARTIFICIAL BANDWIDTH EXTENSION USING A CONDITIONAL VARIATIONAL AUTO-ENCODER
         Pramod Bachhav; Eurecom
         Massimiliano Todisco; Eurecom
         Nicholas Evans; Eurecom
 
  SLP-P21.10: PERCEPTUALLY-MOTIVATED ENVIRONMENT-SPECIFIC SPEECH ENHANCEMENT
         Jiaqi Su; Princeton University
         Adam Finkelstein; Princeton University
         Zeyu Jin; Adobe Research
 
  SLP-P21.11: A DEEP LEARNING LOSS FUNCTION BASED ON THE PERCEPTUAL EVALUATION OF THE SPEECH QUALITY
         Juan Manuel Martín-Doñas; University of Granada
         Angel Manuel Gomez; University of Granada
         Jose A. Gonzalez; University of Malaga
         Antonio M. Peinado; University of Granada