Login Paper Search My Schedule Paper Index Help

My ICASSP 2019 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Clicking on the Add button next to a paper title will add that paper to your custom schedule.
Clicking on the Remove button next to a paper will remove that paper from your custom schedule.

MLSP-P17: Deep Learning V

Session Type: Poster
Time: Friday, May 17, 13:30 - 15:30
Location: Poster Area G, East Landing, First Floor
Session Chair: David Miller, Penn State University
 
  MLSP-P17.1: SEMI-SUPERVISED TRANSFER LEARNING FOR CONVOLUTIONAL NEURAL NETWORKS FOR GLAUCOMA DETECTION
         Manal AlGhamdi; Umm Al-Qura University
         Mingqi Li; Harbin Institute of Technology
         Mohamed Abdel-Mottaleb; University of Miami
         Mohamed Abou Shousha; Bascom Palmer Eye Institute
 
  MLSP-P17.2: AN ENHANCED HIERARCHICAL EXTREME LEARNING MACHINE WITH RANDOM SPARSE MATRIX BASED AUTOENCODER
         Tianlei Wang; Hangzhou Dianzi University
         Xiaoping Lai; Hangzhou Dianzi University
         Jiuwen Cao; Hangzhou Dianzi University
         Chi-Man Vong; University of Macau
         Badong Chen; Xi’an Jiaotong University
 
  MLSP-P17.3: GROUP ACTION EQUIVARIANCE AND GENERALIZED CONVOLUTION IN MULTI-LAYER NEURAL NETWORKS
         Pan Zhong; Iowa State University
         Zhengdao Wang; Iowa State University
 
  MLSP-P17.4: DYNAMIC WEIGHT ALIGNMENT FOR TEMPORAL CONVOLUTIONAL NEURAL NETWORKS
         Brian Kenji Iwana; Kyushu University
         Seiichi Uchida; Kyushu University
 
  MLSP-P17.5: SURE-TISTA: A SIGNAL RECOVERY NETWORK FOR COMPRESSED SENSING
         Mengcheng Yao; Southeast University
         Jian Dang; Southeast University
         Zaichen Zhang; Southeast University
         Liang Wu; Southeast University
 
  MLSP-P17.6: CONTINUAL LEARNING FOR ANOMALY DETECTION WITH VARIATIONAL AUTOENCODER
         Felix Wiewel; University of Stuttgart
         Bin Yang; University of Stuttgart
 
  MLSP-P17.7: APE-GAN: ADVERSARIAL PERTURBATION ELIMINATION WITH GAN
         Guoqing Jin; Inst. of Computing Teth, Chinese Academy of Sciences
         Shiwei Shen; Inst. of Computing Teth, Chinese Academy of Sciences
         Dongming Zhang; National Computer Network Emergency Response Technical Team of China
         Feng Dai; Inst. of Computing Teth, Chinese Academy of Sciences
         Yongdong Zhang; Inst. of Computing Teth, Chinese Academy of Sciences
 
  MLSP-P17.8: ADVERSARIAL LEARNING OF LABEL DEPENDENCY: A NOVEL FRAMEWORK FOR MULTI-CLASS CLASSIFICATION
         Che-Ping Tsai; National Taiwan Universuty
         Hung-Yi Lee; National Taiwan Universuty
 
  MLSP-P17.9: LOOK, LISTEN, AND LEARN MORE: DESIGN CHOICES FOR DEEP AUDIO EMBEDDINGS
         Jason Cramer; New York University
         Ho-Hsiang Wu; New York University
         Justin Salamon; New York University
         Juan Pablo Bello; New York University
 
  MLSP-P17.10: LEARNING POSE-AWARE 3D RECONSTRUCTION VIA 2D-3D SELF-CONSISTENCY
         Yi-Lun Liao; National Taiwan University
         Yao-Cheng Yang; National Taiwan University
         Yuan-Fang Lin; National Taiwan University
         Pin-Jung Chen; National Taiwan University
         Chia-Wen Kuo; Georgia Institute of Technology
         Wei-Chen Chiu; National Chiao Tung University
         Yu-Chiang Frank Wang; National Taiwan University
 
  MLSP-P17.11: ON THE USEFULNESS OF STATISTICAL NORMALISATION OF BOTTLENECK FEATURES FOR SPEECH RECOGNITION
         Erfan Loweimi; University of Edinburgh
         Peter Bell; University of Edinburgh
         Steve Renals; University of Edinburgh
 
  MLSP-P17.12: LEARNING TEMPORAL INFORMATION FROM SPATIAL INFORMATION USING CAPSNETS FOR HUMAN ACTION RECOGNITION
         Abdullah Algamdi; University of Warwick
         Victor Sanchez; University of Warwick
         Chang-Tsun Li; Deakin University