Login Paper Search My Schedule Paper Index Help

My ICASSP 2019 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Clicking on the Add button next to a paper title will add that paper to your custom schedule.
Clicking on the Remove button next to a paper will remove that paper from your custom schedule.

MLSP-P11: Semi-supervised and Unsupervised Learning

Session Type: Poster
Time: Thursday, May 16, 08:00 - 10:00
Location: Poster Area G, East Landing, First Floor
Session Chair: Yue Lu, Harvard University
 
  MLSP-P11.1: EE-AE: AN EXCLUSIVITY ENHANCED UNSUPERVISED FEATURE LEARNING APPROACH
         Jingcai Guo; The Hong Kong Polytechnic University
         Song Guo; The Hong Kong Polytechnic University
 
  MLSP-P11.2: GENERALIZED BOUNDARY DETECTION USING COMPRESSION-BASED ANALYTICS
         Christina Ting; Sandia National Laboratories
         Richard Field; Sandia National Laboratories
         Tu-Thach Quach; Sandia National Laboratories
         Travis Bauer; Sandia National Laboratories
 
  MLSP-P11.3: BINARY CLASSIFICATION ONLY FROM UNLABELED DATA BY ITERATIVE UNLABELED-UNLABELED CLASSIFICATION
         Hirotaka Kaji; Toyota Motor Corp.
         Masashi Sugiyama; RIKEN
 
  MLSP-P11.4: ENTROPY-REGULARIZED OPTIMAL TRANSPORT GENERATIVE MODELS
         Dong Liu; KTH Royal Institute of Technology
         Minh Thành Vu; KTH Royal Institute of Technology
         Saikat Chatterjee; KTH Royal Institute of Technology
         Lars K. Rasmussen; KTH Royal Institute of Technology
 
  MLSP-P11.5: DEEP GRAPH REGULARIZED LEARNING FOR BINARY CLASSIFICATION
         Minxiang Ye; University of Strathclyde
         Vladimir Stankovic; University of Strathclyde
         Lina Stankovic; University of Strathclyde
         Gene Cheung; York University
 
  MLSP-P11.6: COMMON RANDOMIZED SHORTEST PATHS (C-RSP): A SIMPLE YET EFFECTIVE FRAMEWORK FOR MULTI-VIEW GRAPH EMBEDDING
         Anuththari Gamage; University of Illinois at Urbana-Champaign
         Brian Rappaport; Cornell University
         Shuchin Aeron; Tufts University
         Xiaozhe Hu; Tufts University
 
  MLSP-P11.7: REVISITING AND IMPROVING SEMI-SUPERVISED LEARNING: A LARGE DIMENSIONAL APPROACH
         Xiaoyi Mai; CentraleSupélec, University Paris Saclay
         Romain Couillet; GIPSA-lab, University of Grenoble-Alpes
 
  MLSP-P11.8: MULTIPLE SUBSPACE ALIGNMENT IMPROVES DOMAIN ADAPTATION
         Kowshik Thopalli; Arizona State University
         Rushil Anirudh; Lawrence Livermore National Laboratory
         Jayaraman J. Thiagarajan; Lawrence Livermore National Laboratory
         Pavan Turaga; Arizona State University
 
  MLSP-P11.9: GRAPH FILTERING WITH MULTIPLE SHIFT MATRICES
         Jie Fan; Arizona State University
         Cihan Tepedelenlioglu; Arizona State University
         Andreas Spanias; Arizona State University
 
  MLSP-P11.10: DISTRIBUTION PRESERVING NETWORK EMBEDDING
         Anyong Qin; Chongqing University
         Zhaowei Shang; Chongqing University
         Taiping Zhang; Chongqing University
         Yuan Yan Tang; University of Macau
 
  MLSP-P11.11: STOCHASTIC GRADIENT DESCENT FOR SPECTRAL EMBEDDING WITH IMPLICIT ORTHOGONALITY CONSTRAINT
         Mireille El Gheche; École Polytechnique Fédérale de Lausanne
         Giovanni Chierchia; Universite Paris-Est
         Pascal Frossard; École Polytechnique Fédérale de Lausanne
 
  MLSP-P11.12: JOINT STRUCTURED GRAPH LEARNING AND UNSUPERVISED FEATURE SELECTION
         Yong Peng; Hangzhou Dianzi University
         Leijie Zhang; Hangzhou Dianzi University
         Wanzeng Kong; Hangzhou Dianzi University
         Feiping Nie; Northwestern Polytechnical University
         Andrzej Cichocki; Skolkovo Institute of Science and Technology