
Bundle Protocol version 7 Implementation with
Configurable Faulty Network and Evaluation

Aidan Casey, Ethan Dickey, Jihun Hwang, Sachit Kothari, Raushan Pandey, Wenbo Xie§

Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
Email: {casey39, dickeye, hwang102, kothar13, pandey72, xie401}@purdue.edu

Abstract—The Bundle Protocol (BP) is a key component that
enables delay/disruption-tolerant networking (DTN), an overlay
network architecture that facilitates communication in challeng-
ing environments with intermittent connectivity. Previous works
on DTNs were largely on analyzing or optimizing DTNs instead
of studying BP alone itself; hence, whether or not BP is still
at an experimental stage must be studied. This work begins by
presenting a lightweight implementation of BP Version 7 (BPv7)
created by implementing only the required portions of RFC9171,
with a new convergence layer that simulates expected and
unexpected disruptions for testing purposes. Our implementation
is lightweight enough to be easily extendable for additional
tests and simple enough to be used for educational purposes.
Some preliminary, lightweight experiments indicate that BPv7,
even with only the required parts in RFC9171, can serve its
purpose and still ensures essential functionalities. It tolerates
disruptions and infinitely long delays well, as intended. Moreover,
it handles large data dumps and floods of packets well, as long
as they are infrequent. In the course of our implementation and
experiments, we identified potential architectural, specification,
and deployment-related flaws of BP, and suggested solutions
or directions toward them from the perspective of software
engineering and network algorithms.

Index Terms—Bundle Protocol, Delay Tolerant Network, Store-
and-forward Networking, Convergence Layer, Bundle Layer

I. INTRODUCTION

Thanks to the development of wireless and mobile networks
integrated into our daily lives, communication does not seem
to be a technical issue anymore. Unfortunately, just as the
5G network only covers the major cities in the United States
currently, not every region on Earth gets to benefit simulta-
neously from such technological advancements. This is not
entirely the fault of the distribution of technology, however.
Computer networks under extreme environments are inevitably
subject to performance barriers such as intermittent connectiv-
ity, long latency, and asymmetric data rate. Under traditional
networks, such as the celebrated TCP/IP-based Internet widely
used today, those effects could result in imperfect end-to-
end connections between two end hosts, packet losses, and
increased metadata in the network.

Delay/disruption tolerant network (DTN) is an overlay
network that is designed to provide stability and resiliency
against extreme conditions by transporting data packets hop-
by-hop in store-and-forward manner. The concept of DTN was
formalized by Kevin Fall and first appeared in the general

§Authors are ordered alphabetically, following the Hardy-Littlewood ax-
ioms of collaboration used in theoretical computer science society.

public from his SIGCOMM ’03 paper [1] as a generalized
version of the Interplanetary Internet (IPN) architecture that
existed back then, and it is now a building block of IPN
and serves as the foundation for many other ‘challenged
Internets’ lacking continuous connectivity [2]. RFC 4838 [3]
formally defines DTN, and describes its basic architecture and
requirements.

In layman’s terms, DTN architecture is similar to the
Internet Protocol suite (TCP/IP), except there is a new layer
called the bundle layer, usually added between the applica-
tion and transport layers. Readers unfamiliar with DTN and
its network architecture can refer to relevant RFCs [3]–[5]
and recent surveys/textbooks such as [6]. Bundle layers can
connect ‘disconnected’ end hosts by generating then storing
and forwarding bundles, the primary data unit (PDU) used in
the bundle layer analogous to datagrams in the network layer
and segments in the transport layer.

The communication protocol designed for the bundle layer
is called bundle protocol (BP), and the most recent version of
bundle protocol is Bundle Protocol version 7 (BPv7) which
is specified in RFC 9171 [5]. To summarize it briefly, BP
largely consists of three sublayers: application agent (AA),
bundle protocol agent (BPA), and convergence layer adapters
(CLAs). AA functions as a ‘secretary’ of the BPA and socket
between application and bundle layer; it is responsible for
processing and handling administrative records for the BPA,
as well as receiving application data from the BPA and
forwarding it to application layer. BPA is the ‘core’ of BP,
generating bundles based on data received from the application
layer through the AA and sending/receiving bundles to/from
the CLA (or convergence layer, if no CLA). CLA sends and
receives bundles from the transport layer, and informs the BPA
of necessary information regarding network status. See RFC
5050 [4] (BPv6) and 9171 [5] for more details.

A. Problem

DTN is a fairly well-established concept and, although
limited, is currently being used to transfer user data between
International Space Station (ISS) and ground stations [7]–[9].
However, outside of that, there have not been many practical
applications of DTN, even for small-scaled terrestrial ones, due
to the lack of understanding of DTN and BP on many fronts.
Several studies were conducted to identify barriers that prevent
the complete integration of DTN into our real-life applications.
As pointed out and studied in multiple recent works, one such

1



barrier is the lack of our theoretical understanding of DTN
itself, such as mathematical modeling [10], scalability [11],
[12], and routing/scheduling [13]–[15].

In contrast, the problems this paper aims to address are more
on the practical, architectural, and implementation aspects of
BPv7 as defined in RFC 9171 exactly. BPv7 is supposedly
an improved version of BPv6 that is not (directly) backward
compatible due to many factors such as encoding methods
and error-detecting codes [16]–[18]. However, to our current
knowledge, there have not been many works discussing the
difference between the two versions in terms of performance,
let alone the feasibility and practicality of BPv7 itself, or
what aspects of BPv7 in RFC 9171 need to be modified
or improved [13], [19]. We should also point out that many
BPv7 implementations that are currently available to the
public such as [20]–[23] were either written in comparatively
unpopular languages, or more importantly, were written when
RFC 9171 was a draft which is now expired and hence not
completely free from errors or discrepancies. For example,
one implementation appears to assume that BPA and AA
communicate by sending bundles to each other, but per RFC
9171, they must be communicating using application data
units (ADUs). Other implementations (such as [24]–[27]) that
are more geared towards simulating a (large-scaled) DTN or
evaluating/optimizing the performance of the applications and
network overall, treat BP more as a ‘black box’ than a portion
of a network that should be extensively studied. It is not very
clear whether the delay/disruption tolerance feature of DTN is
attributed to the protocol primarily, or from some other aspects
of the network.

B. Contribution

We begin by presenting a nearly complete implementation
of BPv71 as defined in RFC 9171 using Java, one of the most
popular programming languages today. Our implementation
is rather ‘lightweight’—easy to reverse-engineer and extend
as needed—and is specifically designed to study and analyze
BPv7. For these reasons, it will contain only the parts that
are imperative to get a small-scale DTN functioning and only
the parts that are strictly required per RFC 9171; for example,
we did not take security into consideration. Note again that
this paper only aims to study the architecture of BPv7, not to
construct and evaluate a candidate DTN for practical usages.
The only required portion of BPv7 that we did not implement
was the CBOR data format. In favor of comprehension and
debugging the network, we chose to use JSON instead.

We conducted experiments2 on our BPv7 implementation
by simulating it on a tiny-scaled software-defined network
(SDN) built using Mininet [28] and Open Network Operating
System (ONOS) [29]. We designed a de facto convergence
layer called Disruption-TCP (DTCP) that allows BPv7 to
communicate effectively with TCP in our (Mininet-simulated)
transport layer and mimic disruptions that can be present in

1Our implementation and setups for the testing environment are available
in this GitHub Repository: https://github.com/etdickey/BPv7Java.

2Demo available in this link (YouTube): https://youtu.be/aika4nRm7wM.

DTN by generating random delays and drops. Section II-A
will provide more details regarding DTCP. We perform sev-
eral simulations of our implementation based on configurable
scenarios. See Section III for more information about the
particular parameters used in testing and our related findings.

We also evaluate the current specification of BP and DTN
(specified in RFCs) from the perspectives of software en-
gineering and network architecture by presenting a set of
existing architectural deficiencies that need to be addressed
and missing features and specifications that can be critical to
the future deployment of DTN with BP (Section IV). We then
conclude with suggestions for future works (Section V-A).

II. IMPLEMENTATION

A. DTCP

Disruption-TCP, or DTCP, is the BPv7 convergence layer
created for this research that simulates random disruptions,
making our network a ‘configurably faulty’ network. It works
by taking a series of configurable length timeframes, measured
in milliseconds, and generates two unique seeds based on the
current timeframe and the connection between any two hosts.
It then uses a pseudo-random number generator with this seed
to determine whether there is an expected disruption and/or
unexpected disruption. This allows the connection to go down
on both sides simultaneously (expectedly or unexpectedly).

1) Expected Disruptions: An expected disruption is any
disruption that both nodes are aware of ahead of time, and
know not to send any bundles across the connection during
that period. An example of an expected disruption in the
classical sense would be two nodes communicating in space,
with a large celestial body occasionally crossing the path
of the connection and disrupting that traffic. This disruption
would be calculable ahead of time, so is considered expected
programmatically. In our particular implementation, we chose
to randomly simulate these expected down times in a way
that both sides of the connection were aware that these were
expected down times and would be down simultaneously, but
that the down times themselves were not explicitly regular.
A different design choice could be easily implemented. It is
important to note that we assume the convergence layer stores
the information about regular disruptions but that it is the
responsibility of the BPA to handle those regular disruptions.

2) Unexpected Disruptions: An unexpected disruption oc-
curs when some other disruption, such as a large amount of
interference, a smaller body intersecting an EM wave con-
nection between space hosts, or any other unpredictable event
occurs over a period. The sending host has no idea that this
happens, so the receiving host instead determines if this bundle
transmission should be successful by the same pseudo-random
process (different parameters) as for expected disruptions.
When DTCP receives a bundle, but before passing it to the
BPA, the DTCP layer decides if this bundle unexpectedly
drops and if so drops it after completing the receive.

3) Alternative Designs: Potential alternatives could allow
for more control of how disruptions occur, such as separate
time frame windows for the two kinds of disruptions, or even

2



the ability to have multiple configurable sub-types of each
with different lengths and frequencies. However, this all costs
additional overhead to the process and could potentially affect
other useful measurements of performance, and as such it
was determined that the two types of disruptions implemented
would be sufficient for this work, where a particular length
and frequency of each of the two classes of disruptions
can be studied independently with less impactful overhead.
Regardless, as discussed in Section IV, the requirements of a
convergence layer for BPv7 are vague, and as such there is
room for many potential alternatives. This solution merely has
some desirable qualities and was built with simplicity in mind.

B. Mininet
The implementation involved the use of three virtual hosts,

each performing a unique role. Host A (or Node A) is the
sending node, which sends traffic to Host B which is the
receiving node (i.e. A → B), although traffic was also sent in
the opposite direction (B → A). In between Host A and Host
B, there is the forwarding node, Host F . All traffic from Host
A first goes through Host F , and all responses from Host B,
which were mostly Status Reports about bundles sent by Host
A also go back through Host F . The forwarding node Host
F also sends a status report when it forwards a bundle sent
through it (due to the hop-by-hop reliable delivery requirement
of DTN – not BPv7). Many more complicated networks
can be made through the Mininet network configuration and
other configuration files, without modifying much or any of
our implementation. An example transmission can be found
detailed in our GitHub repository.

C. Configuration
For each simulation, there are a number of parameters our

implementation includes. Some are built for further extension,
such as certain internal queue sizes, the number of threads for
receiving bundles, the maximum number of connections the
server accepts at once, etc. These were kept constant within
our testing.

1) Routing and Name Lookup: Routing is something that is
not specified in RFC 9171, and IDs are simply URIs [30], so
also need to be converted into the underlying address scheme.
For this reason, and due to its status outside of the scope of this
project, routing was done via configuration with hard coded
routes for a given destination ID. For more information about
the potential flaws in BPv7 with regards to routing, see a more
complete discussion in our GitHub repository.

2) Simulation Parameters: Other DTCP configuration op-
tions include the port of the DTCP receiving server, the desired
probability for each of expected and unexpected disruptions,
and the length of the timeframe. For the BPA, configurations
include the default bundle lifetime and the set of actions the
BPA should take when a status report notifies the agent that
a bundle was lost. Finally, simulation parameters included
minimum and maximum bundle sizes to send, simulation
length, minimum and maximum sending frequency of bundles,
and simulation identifier. The particular simulations analyzed
in this report are contained within Section III.

D. Other Design Decisions

Several other design decisions were made. One such de-
cision was using JSON to send bundles instead of Concise
Binary Object Representation (CBOR) [31]. CBOR is a more
dense and less human-readable replacement for JSON men-
tioned many times in the BPv7 specification. Implementing all
of CBOR’s specifications was out of the scope of this project.
This potentially slows down some of our results, but should do
so proportionally, allowing trends to still exist. This, however,
makes our implementation not fully compliant with RFC 9171.
See Section V-A4 for further discussion.

Another such decision was logging. Logging was imple-
mented as an asynchronous thread, so while it should not
have majorly impacted performance, it still slowed down the
protocol some and is likely reflected in the results. However,
data gathering is inherently important to the project, as is the
ability to test different situations and see what errors may
arise, so logging is pervasive in the program. An attempt was
made to make tracking of the status of any bundle as clear
as possible, so logging is done in every stage of a bundle’s
lifetime, including a unique identifier containing creation time,
destination, etc.

III. ANALYSIS

Individual graphs for each scenario are available in our
GitHub repository.

A. Scenarios and Network Statistics

We prioritized measuring latency from sending application
layer (A) to receiving application layer (B) as that is what
matters most to the end user. Further discussion on additional
network analysis is discussed in Section V-A1.

To measure the impact of various network situations, we
created 8 scenarios labelled 0-8 in binary. For example, 010.
The first bit represents low (0) or high (1) density of packets,
where low density of packets is represented by packets only
being sent every 200ms± 50ms and high density is a packet
every 50ms ± 5ms. The second bit represents the size of
the packets, with small (0) being 40B ± 20B and large (1)
being 10KB ± 1KB. The last bit represents low and high
frequency of expected disruptions, with low (0) giving a
disruption probability of 1% and high (1) a probability of
25%. Disruptions were checked every and lasted 100ms. The
simulation results presented in this paper sent packets for 50
seconds from A to B and ran until B received every bundle
and administrative overhead bundles stop.

B. High Density Results

Referring to Figure 1, what we observe is the delay from
A to B over time in three tests with packets being sent
very frequently (first bit). The results show that when large
bundles are present in the network and being sent frequently
(111/green), the network delay increased linearly with time
while bundles were being sent. After bundles stopped being
sent altogether, it took about 50 more seconds to finish sending
the bundles.

3



Fig. 1. Delay from application layer to application layer between sender
and receiver, high density tests without the 110 test (which has high density
of packets, high packet size, and low density of expected downs). Packets
stopped being sent from the application layer at t = 50s.

Fig. 2. Delay from application layer to application layer between sender
and receiver, high density tests. Same as Figure 1 with the 110 test added.
Packets stopped being sent from the application layer at t = 50s.

Fig. 3. Delay between application layers of sender and receiver, low density
tests. Packets stopped sending from the application layer at t = 50s.

C. High Packet Density, Large Packets, Low Frequency of
Interruptions

In Figure 2, the 110 case is of particular interest. When there
was low frequency of interruptions, the nodes in the network
had so much overhead in resending that at a certain point, new
bundles started timing out before they were able to be sent.
This caused Status Reports to be sent back to A, triggering a
resend and causing thrashing in the network. After increasing
the resend timeout increase from 1 second to 100 seconds
(in several iterations, the last of which we consider the most
extreme case we wanted to study), we saw that with a 100
second increase in TTL on each resend, eventually the bundle
TTL was able to surpass the amount of time spent thrashing
in the network. This happened around 420s, as seen in the
graph, after which bundles started being delivered again (after
the pause around 385s).

This is our most important result of yet as it shows that
BP does not run well under what is considered standard
networks loads in today’s network, which includes very high
density of packets that are not small. What BP was originally
intended for, tolerating large packets with high-frequency and
large delays (which the vast majority of modern networking
protocols cannot handle at all), it meets its expectations. This
is seen in the low density simulations in Figure 3.

IV. ARCHITECTURAL IMPROVEMENTS

RFC 9171 mentions in several locations that there is work
needed in investigating parts of it, or leaves matters up to im-
plementation. During the implementation phase of this project,
we perceived a series of deficiencies in the current BP(v7)
architecture based on the RFCs, that need to be addressed for
potential future deployment.

A. Potential Architectural Flaw

Violation of Single Responsibility Principle (SRP): This
is the most severe issue we raise in this paper. When an
administrative record is received, either the BPA must parse it
or the AA must de-serialize it. Therefore, the BPA needs an
administrative record processing function or the AA needs a
network serialization function; hence, receiving or responding
to an administrative record violates the single-responsibility
principle (SRP), part of the software engineering principle
SOLID [32], as they are two separate layers within the bundle
layer with conflicting responsibilities. Recall that the BPA is
supposed to be the only layer that knows what a bundle is,
and the AA is functioning partially as a secretary for the
BPA, so it should have exclusive knowledge of what to do
with administrative records and what they are (since they are
content that gets wrapped in a bundle). Additionally, this issue
leads to low cohesion and high coupling between the BPA and
the AA, violating the software engineering principles of High
Cohesion, Low Coupling, and Information Expert in another
software engineering framework GRASP [33]. One way to
remediate this is by placing the administrative element (AE)
in the BPA layer instead of the AA layer, as those need to be
coupled by the nature of what they do. This increases cohesion

4



of the two parts (AA and BPA) individually while reducing
their coupling by requiring the AE to be in the BPA layer.

B. Missing Specifications

Unspecified Convergence Layer: The convergence layer is
largely left as an implementation detail in RFC 9171 and
5050. It is unclear what responsibilities are required for a
convergence layer and how it should interact with BP. While it
is true that convergence layers are defined in some RFCs, how
convergence layers are implemented can drastically change
the performance and functionality of the protocol, and the
interfaces available to the application layer. As an overlay
architecture, the importance of convergence layer and what BP
needs from it must not be undermined. Moreover, RFC 9171
requires the convergence-layer protocol to provide congestion
control, but such traffic-controlling features are closer to
the responsibilities of the transport layer (or below). Some
questions that could be addressed by ‘BPv8’ might include:

• How should the convergence layer receive packets? Is it
required to hold onto partial packets for some amount of
time until the rest can be filled in?

• What responsibilities should the CLA have that are ex-
plicitly not given to any other layer? For example, URI
interpretation, routing, etc.

• Should the CLA be responsible for knowing anything
about and/or handling (un)expected network disruptions?

Unspecified Subject and Layer for Acknowledgment and
Reliable Transfer: The acknowledgment requested from the
user application flag is not specific. It is unclear who (which
layer, agent, etc.) is responsible for acknowledging, and there
are a variety of things for which acknowledgments could be
requested from this single flag. Also, delay-tolerant acknowl-
edgments (perhaps in batches to reduce network load) could
be desirable, even if it is much delayed due to batching or
disruptions. We recommend including such protocol speci-
fications. Moreover, per RFC 4838 [3], even if end-to-end
acknowledgment is optional, DTNs are still responsible for
providing hop-by-hop transfer of reliable delivery in some way
(such as custody transfer [34]). In contrast, RFC 9171 does not
explicitly require acknowledgments—or any sort of reliable
transfer including custody transfer—for packets sent between
two connected points in the network, seemingly violating the
requirement of hop-by-hop reliable delivery responsibility by
omission. RFC 9171 by itself, in effect, does not require BP
to be reliable. Besides the potential performance issues (e.g.,
congestion, storage, etc.), it is unclear why custody transfer
is left as optional, was removed in RFC 9171, or relies on
other layers/protocols to handle it. See [34]–[36] for more
information on the importance of custody transfer.

C. Missing Critical Features

Due to space constraints, we have reserved some of the
more detailed criticisms that deal with potential deployment
and implementation issues for our GitHub repository. Two
big concerns covered there are issues like the undefined
notion of clock accuracy and method of synchronization and

absence of identification of certain routing responsibilities,
which can both easily cause undesirable network patterns if
no requirements are stated about them.

V. CONCLUSION

A framework that can be used to study BPv7 was intro-
duced. Our implementation is lightweight; it contains only
the required portions of RFC 9171 (except the CBOR data
format) and is easier to understand (written in a popular pro-
gramming language, JSON instead of CBOR, etc.) compared
to other implementations available online. More importantly,
our framework is easily configurable and extendable. Users
can simulate more complicated network configurations and
scenarios by modifying the Mininet configuration files as
they desire. Our convergence layer (DTCP, Section II-A) then
allows users to configurably simulate ‘faulty’ networks by
generating disruptions of any pattern.

We also expect that our framework can be used for edu-
cational purposes, such as introducing and teaching students
about the inner workings of BP and DTN, since our implemen-
tation is simpler than the others available online. Some parts
of the implementation inherently are more difficult to write
this way, especially while attempting to allow for maximum
data collection via logging while measuring network speed,
but for this reason, many parts were abstracted for the sake
of clean external interfaces, with further investigation into its
workings only required when studying that particular section.

The experimental results obtained (Section III) are based
on simple experiments but give some insights into the network
behavior of BP that could help guide design decisions in future
iterations of BP. For example, as Section III-C shows, BPv7
may perform poorly under typical network loads.

We finally present a list of potential architectural, spec-
ification, and deployment-related flaws of BP, and suggest
solutions or directions toward them in Section IV.

A. Future Works

There are several avenues for future research where our
framework can be used. These are only a few such examples.

1) More Avenues of Analysis: Our current implementation
studies end-to-end lifetime of a bundle, but analysis can and
should be performed in the future on topics such as period
spent in specific parts of the BPv7 ecosystem, and other
behaviors. Much of the information for these analyses have
been logged, but they are more complicated and may bring to
light new considerations about BPv7.

2) Expanded Network Configurations: One such example is
having more complicated network configurations, as currently
testing is just done between two nodes communicating through
a forwarding host, but no testing was performed involving
several hosts sending to each other through a single or multiple
forwarding hosts, and most communication other than status
reports went in a single direction.

3) Data Corruption: BP is inherently designed with CRCs
to be able to detect data corruption from transmission. This
is not tested in our implementation, and no data corruption

5



should occur in mininet, but artificial data corruption similar
to how disruptions are handled in DTCP could allow for
exploration of this topic.

4) Encoding: Our current implementation does not use
CBOR [31], a more lightweight data encoding than JSON for
sending over the network. RFC 9171 requires its use, but we
went with JSON due to its clarity in implementation and the
ease it provides in debugging processes such as log analysis,
contributing to our goal of implementing BPv7 at the simplest
level. However, this makes our implementation not fully
compliant with RFC 9171. Viewing the effects of switching to
this or some other efficient encoding from JSON may impact
results, though trends about the network as a whole should be
unaffected by a mere change in encoding because the relative
size of bundles should remain approximately the same.

5) Metadata Optimization: In some cases, metadata can
create many small bundles (like status reports) that can greatly
burden the network. One potential avenue for improvement is
the aggregation of status reports into a single bundle over a
longer period. The status reports can add up to a significant
amount of data when a large number of bundles are sent
frequently. Shrinking them into a single bundle could alleviate
this concern, and should be investigated.

REFERENCES

[1] K. Fall, “A delay-tolerant network architecture for challenged internets,”
in Proceedings of the 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, ser. SIG-
COMM ’03. ACM, 2003, p. 27–34.

[2] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf, B. Durst, K. Scott,
and H. Weiss, “Delay-tolerant networking: an approach to interplanetary
internet,” IEEE Communications Magazine, vol. 41, no. 6, 2003.

[3] L. Torgerson, S. C. Burleigh, H. Weiss, A. J. Hooke, K. Fall, D. V. G.
Cerf, K. Scott, and R. C. Durst, “Delay-Tolerant Networking Architec-
ture,” RFC 4838, 04 2007.

[4] K. Scott and S. C. Burleigh, “Bundle Protocol Specification,” RFC 5050,
11 2007.

[5] S. Burleigh, K. Fall, and E. J. Birrane, “Bundle Protocol Version 7,”
RFC 9171, 01 2022.

[6] A. Vasilakos, Y. Zhang, and T. Spyropoulos, Eds., Delay Tolerant
Networks: Protocols and Applications. Boca Raton, FL: CRC press,
2016, wireless Networks and Mobile Communications Series.

[7] R. Pitts, K. Nichols, M. Holbrook, K. Gifford, A. Jenkins, and
S. Kuzminsky, “Dtn implementation and utilization options on the
international space station,” in SpaceOps 2010 Conference, 2010.

[8] A. Schlesinger, B. M. Willman, L. Pitts, S. R. Davidson, and W. A.
Pohlchuck, “Delay/disruption tolerant networking for the international
space station (iss),” in 2017 IEEE Aerospace Conference, 2017.

[9] A. Jenkins, S. Kuzminsky, K. K. Gifford, R. L. Pitts, and K. Nichols,
“Delay/disruption-tolerant networking: Flight test results from the inter-
national space station,” in 2010 IEEE Aerospace Conference, 2010.

[10] R. Short, A. Hylton, R. Cardona, R. Green, G. Bainbridge, M. Moy,
and J. Cleveland, “Towards sheaf theoretic analyses for delay tolerant
networking,” in 2021 IEEE Aerospace Conference. Big Sky, MT: IEEE,
2021, pp. 1–9.

[11] A. Hylton, R. Short, R. Green, and M. Toksoz-Exley, “A mathematical
analysis of an example delay tolerant network using the theory of
sheaves,” in 2020 IEEE Aerospace Conference, Big Sky, MT, 2020.

[12] A. Hylton, J. Cleveland, R. Dudukovich, D. Iannicca, N. Kortas, B. La-
Fuente, J. Nowakowski, D. Raible, R. Short, B. Tomko, and A. Wrob-
lewski, “New horizons for a practical and performance-optimized solar
system internet,” in 2022 IEEE Aerospace Conference. IEEE, 2022.

[13] E. Koutsogiannis, S. Diamantopoulos, and V. Tsaoussidis, “A dtn
testbed architecture,” in 2009 International Conference on Ultra Modern
Telecommunications & Workshops. St. Petersburg, Russia: IEEE, 2009.

[14] G. Araniti, N. Bezirgiannidis, E. Birrane, I. Bisio, S. Burleigh, C. Caini,
M. Feldmann, M. Marchese, J. Segui, and K. Suzuki, “Contact graph
routing in dtn space networks: overview, enhancements and perfor-
mance,” IEEE Communications Magazine, vol. 53, no. 3, 2015.

[15] R. Dudukovich and D. E. Raible, “Transmission scheduling and routing
algorithms for delay tolerant networks,” in 34th AIAA international
communications satellite systems conference, ser. AIAA 2016-5753.
Cleveland, OH: AIAA, Oct 2016, p. 5753.

[16] J. Deaton and B. Blanding, “Bpv6 and bpv7 coexistence in delay tolerant
networking (dtn),” NASA Technical Reports Server (NTRS), Tech. Rep.
20210010630, 2021.

[17] A. Bisacchi, C. Caini, and S. Lanzoni, “Design and implementation
of a bundle protocol unified api,” in 2022 11th Advanced Satellite
Multimedia Systems Conference and the 17th Signal Processing for
Space Communications Workshop (ASMS/SPSC), Graz, Austria, 2022.

[18] D. Ta, S. Booth, and R. Dudukovich, “Towards software-defined delay
tolerant networks,” Network, vol. 3, no. 1, pp. 15–38, 2023.

[19] C. Choudhari and D. Niture, “Disruption tolerant network (dtn) for
space communication: An overview,” in 2022 IEEE 7th International
conference for Convergence in Technology (I2CT), 2022, pp. 1–5.

[20] A. Penning, L. Baumgärtner, J. Höchst, A. Sterz, M. Mezini, and
B. Freisleben, “Dtn7: An open-source disruption-tolerant networking
implementation of bundle protocol 7,” in International Conference on
Ad-Hoc Networks and Wireless (AdHoc-Now 2019). Luxembourg,
Luxembourg: Springer, 2019, pp. 196–209.

[21] L. Loiseau and N. Izvorski, “dtn7-kotlin: Delay-tolerant networking
software suite for kotlin, bundle protocol version 7,” https://github.com/
NodleCode/dtn7-kotlin/, 2021.

[22] RightMesh, “Terra: Lightweight and extensible dtn library,” https://
github.com/RightMesh/Terra/, 2019.

[23] L. Baumgärtner, J. Höchst, and T. Meuser, “B-dtn7: Browser-based
disruption-tolerant networking via bundle protocol 7,” in 2019 Inter-
national Conference on Information and Communication Technologies
for Disaster Management (ICT-DM), Dec 2019, pp. 1–8.

[24] M. Demmer, A. McMahon, R. Martins, D. Long, and R. H.
et al., “Dtn2: Dtn reference implementation,” https://github.com/
delay-tolerant-networking/DTN2, 2005, last updated on Jun 27, 2016.

[25] S. Burleigh, “Interplanetary overlay network: An implementation of the
dtn bundle protocol,” in 2007 4th IEEE Consumer Communications and
Networking Conference. Las Vegas, NV: IEEE, 01 2007, pp. 222–226.

[26] J. Greifenberg and D. Kutscher, “Rdtn: An agile dtn research platform
and bundle protocol agent,” in Wired/Wireless Internet Communications.
Springer Berlin Heidelberg, 2009, pp. 97–108.

[27] NASA, “High-rate delay tolerant network (hdtn) software,” https://
github.com/nasa/HDTN, 2019, last updated on May 2, 2023.

[28] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX,
no. 19. ACM, Oct 2010, pp. 1–6.

[29] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“Onos: Towards an open, distributed sdn os,” in Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, ser. HotSDN
’14. ACM, Aug 2014, pp. 1–6.

[30] M. Nottingham, “URI Design and Ownership,” RFC 8820, 06 2020.
[31] C. Bormann and P. E. Hoffman, “Concise Binary Object Representation

(CBOR),” RFC 8949, 12 2020.
[32] R. C. Martin, M. Martin, and M. Martin, Agile principles, patterns, and

practices in C#. Prentice Hall, 2007.
[33] C. Larman, Applying UML and patterns: an introduction to object

oriented analysis and design and interative development. Pearson
Education India, 2012.

[34] K. Fall, W. Hong, and S. Madden, “Custody transfer for reliable delivery
in delay tolerant networks,” Intel Research Berkeley, Tech. Rep. IRB-
TR-03-030, 2003.

[35] F. Noviani, D. Stiawan, S. D. Siswanti, T. W. Septian, M. A. Riyadi,
F. Aljaber, and R. Budiarto, “Analysis of custody transfer on moving
bundle protocol of wireless router in delay tolerant network (dtn),” in
2017 4th International Conference on Information Technology, Com-
puter, and Electrical Engineering (ICITACEE), 2017, pp. 50–53.

[36] K. Fall and S. Farrell, “Dtn: an architectural retrospective,” IEEE Journal
on Selected Areas in Communications, vol. 26, no. 5, pp. 828–836, 2008.

6


