TU1.P1.2
          Maximum Likelihood Estimation of the Direction of Sound In A Reverberant Noisy Environment
Mohamed Mansour, Amazon Inc., United States of America
              Session:
                TU1.P1: Poster Session I: Source localization and tracking, Special Session: AI-guided signal processing for efficient, controllable, and interpretable audio enhancement  Poster
              Track:
                Acoustic echo and feedback suppression
              Location:
                Nedre Foyer
              Presentation Time:
                Tue, 10 Sep, 10:00 - 12:00 Central European Time (UTC +1)
              Session Co-Chairs:
Patrick Naylor, Imperial College London and Pejman Mowlaee, Jabra
Presentation
                  Discussion
                    Resources
                No resources available.
            Session TU1.P1
            TU1.P1.1: Binaural Direction-of-Arrival estimation incorporating head movement information
  Erik Fleischhauer, Sebastian Nagel, Peter Jax, RWTH Aachen University, Germany, Germany
  TU1.P1.2: Maximum Likelihood Estimation of the Direction of Sound In A Reverberant Noisy Environment
  Mohamed Mansour, Amazon Inc., United States of America
  TU1.P1.3: INVESTIGATION ON SYSTEM BANDWIDTH FOR DNN-BASED BINAURAL SOUND LOCALISATION FOR HEARING AIDS
  Jonas Van Damme, Stijn Kindt, Siyuan Song, Jasper Maes, Nilesh Madhu, Ghent university, Belgium
  TU1.P1.4: Source Localization by Multidimensional Steered Response Power Mapping with Sparse Bayesian Learning
  Wei-Ting Lai, Lachlan Birnie, Xingyu Chen, Amy Bastine, Thushara Abhayapala, Prasanga Samarasinghe, Australian National Univerity, Australia
  TU1.P1.5: DIRECTION OF ARRIVAL ESTIMATION ON A SPHERE
  Alexis Favrot, Christof Faller, Illusonic GmbH, Switzerland
  TU1.P1.6: DSP-INFORMED BANDWIDTH EXTENSION USING LOCALLY-CONDITIONED EXCITATION AND LINEAR TIME-VARYING FILTER SUBNETWORKS
  Shahan Nercessian, Alexey Lukin, Johannes Imort, Native Instruments, United States of America
  TU1.P1.7: DYNAMIC AUDIO-VISUAL SPEECH ENHANCEMENT USING RECURRENT VARIATIONAL AUTOENCODERS
  Zohre Foroushi, Richard Dansereau, Carleton University, Canada
  TU1.P1.8: TINY NEURAL-NETWORK CONTROL OF FREQUENCY-DOMAIN ADAPTIVE FILTERING FOR LINEAR SYSTEM IDENTIFICATION IN ACOUSTIC ECHO CANCELLATION
  Svantje Voit, Gerald Enzner, Carl von Ossietzky Universität Oldenburg, Germany
  TU1.P1.9: WEAKLY DOA GUIDED SPEAKER SEPARATION WITH RANDOM LOOK DIRECTIONS AND ITERATIVELY REFINED TARGET AND INTERFERENCE PRIORS
  Alexander Bohlender, Ghent University - imec, Belgium; Ann Spriet, Wouter Tirry, Goodix Technology (Belgium) B.V., Belgium; Nilesh Madhu, Ghent University - imec, Belgium
  TU1.P1.10: E-URES: EFFICIENT USER-CENTRIC RESIDUAL-ECHO SUPPRESSION FRAMEWORK WITH A DATA-DRIVEN APPROACH TO REDUCING COMPUTATIONAL COSTS
  Amir Ivry, Israel Cohen, Technion Israel Institute of Technology, Israel
  TU1.P1.11: Informed FastICA: Semi-Blind Minimum Variance Distortionless Beamformer
  Zbynek Koldovsky, Jiri Malek, Jaroslav Cmejla, Technical University of Liberec, Czechia; Stephen O'Regan, Naval Surface Warfare Center Carderock Division, United States of America
  TU1.P1.12: Learning-based Multi-Channel Speech Presence Probability Estimation Using a Low-Parameter Model and Integration With MVDR Beamforming for Multi-Channel Speech Enhancement
  Shuai Tao, Aalborg University, Denmark; Pejman Mowlaee, GN Audio, Denmark; Jesper Rindom Jensen, Mads Græsbøll Christensen, Aalborg University, Denmark