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ABSTRACT
Unlike existing works that employ fully-supervised training
with polygon annotations, this study proposes an uncon-
strained text detection system termed Polygon-free (PF),
in which most existing polygon-based text detectors (e.g.,
PSENet [1]) are trained with only upright bounding box
annotations. Our core idea is to transfer knowledge from
synthetic data to real data to enhance the supervision infor-
mation of upright bounding boxes. This is made possible
with a simple segmentation network, namely Skeleton At-
tention Segmentation Network (SASN), that includes three
vital components (i.e., channel attention, spatial attention and
skeleton attention map) and one soft cross-entropy loss.

Experiments demonstrate that the proposed Polygon-free
yields surprisingly high-quality pixel-level results with only
upright bounding box annotations. For example, without us-
ing polygon annotations, PSENet achieves an 80.5% F-score
on TotalText (vs. 80.9% of fully supervised counterpart),
31.1% better than training directly with upright bounding box
annotations, and saves 80%+ labeling costs.

Index Terms— Text Detection, Weakly Supervision

1. INTRODUCTION

Recently, most scene text detectors [1, 2] have utilized poly-
gon annotation with many coordinates (see the example in
Fig. 2 (d)) to capture texts with different shapes. Although
the polygon annotations are more accurate than the upright
bounding box annotations, the labeling cost of polygons is ex-
tremely high, limiting the wide use in large-scale real-world
applications. By contrast, the upright bounding box annota-
tions are more economical, and are 4× cheaper than poly-
gons annotations [3, 4], e.g., saving 80% + annotation cost
on TotalText [3], as shown in Fig. 1. This cost gap becomes
larger for the large-scale benchmarks such as ICDAR2019-
LSVT [5] and ICDAR2019-Art [6].

To address the text data cost issue, we first propose a sim-
ple, unconstrained system termed Polygon-free (PF) for train-
ing text detector with upright bounding box annotated data.
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Fig. 1: The performance and annotation cost for
PSENet [1] and DB [7] on TotalText [3]. PSENet with
Polygon-free is 31.1% better than training directly with up-
right bounding box annotation, 4× times cheaper than that
with polygon annotation.

Compared with polygon annotations, the upright bounding
box is much less expensive but contains less pixel informa-
tion for efficient supervision. Thus, effectively utilizing the
upright bounding box annotations and boosting the text de-
tection performance becomes critical in this case. An alter-
native approach is to utilize synthetic text data [8, 9] that are
largely available from the virtual world, and the ground truth
can be freely and automatically generated. However, many
previous works [8] have shown that training directly with syn-
thetic data degrades the performance on real data due to a
phenomenon known as “domain shift” (e.g., 58.0% for EAST
directly training on SynthText and testing on ICDAR2015).
Unlike the existing works, motivated by the attention mech-
anism studies [10] and BoxSup [11], we propose a Skeleton
Attention Segmentation Network (SASN), and carefully de-
sign a Skeleton Attention Module based on channel attention
and spatial attention to reduce the domain shift, help the net-
work learn domain-invariant features with stronger represen-
tation power for text in a prior upright bounding box. Besides,
considering the particular geometry of texts, we argue that it
is more important to focus on the skeleton than on other re-
gions. Therefore, we introduce a soft attention weight map
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Fig. 2: Comparisons of annotation cost. Annotation of
more points is more expensive (the price of 100 text in-
stances). Note that the data cost information is obtained from
Amazon Mechanical Turk (MTurk).

called skeleton map and corresponding soft cross-entropy loss
to enhance the representation power of the text skeleton.

To make it suitable for all detectors, the whole Polygon-
free is divided into two steps: (1) We firstly train SASN with
almost free synthetic data based on character annotation. And
then, the box-level annotations are utilized to crop the real
image, which are fed into the SASN for generating polygon-
liked pseudo labels. (2) By splicing all of the local pseudo la-
bels, the global pseudo label is obtained. In this way, upright
bounding box annotations can be converted to high-quality
polygon pseudo labels. General detectors ( e.g., PSENet [1]
) trained on these pseudo labels can achieve almost the same
performance as those trained on original polygon annotations.
The main contributions are two folds:

(1) We demonstrate a simple, unconstrained Polygon-free
system that can train most existing text detectors with only
upright bounding box annotations. This means that general
detectors (e.g., PSENet [1]) can be trained by upright bound-
ing box with no modification to the network itself.

(2) We introduce a Skeleton Attention Segmentation Net-
work composed of three components (i.e., Spatial, Channel,
and Skeleton Attention) and a soft cross-entropy loss, which
bridging the domain gap between synthetic data and real data.

2. RELATED WORK

Supervised Text Detection. Scene text detection has achieved
remarkable progress in the deep learning era. Previous meth-
ods [12, 13] focused on horizontal or multi-oriented text de-
tection. CTPN [14] adopted Faster RCNN [15] and modified
RPN to detect texts. EAST [16] used FCN [17] to predict the
text score map, distance map and angle map. Recent works
focused on curved text detection [18, 19, 20]. PSENet [1] and
PAN [2] treat text instances as kernels with different scales
and reconstruct text instance with post-processing. There
are a few previous works [21] concerning weakly supervised
text detection. WordSup[22] trains a character detector by
exploiting word annotations in rich large-scale real scene text
datasets.

Attention Mechanism. One important property of a hu-
man visual system is that we know “what” and “where” to
focus our attention in an image. Similarly, attention enables
the artificial model to focus only on the important data. The
classic works based on attention, BAM [10] and CBAM [10]

increase the accuracy of the classifier by utilizing both 1D
channel and 2D spatial self-attention maps.

3. APPROACH

3.1. Skeleton Attention Segmentation Network

Network Architecture. As presented in Fig. 3 (a), we use
ResNet50 [23] as the backbone network for the SASN, and
extract three levels of features ( i.e., C1, C2, C3 ) from dif-
ferent downsampled scales ( i.e., 1/4, 1/8, 1/16 ). After that,
the skeleton stream fuses C1 and C3 to predict the skele-
ton attention map. The skeleton attention map is downsam-
pled to make it suitable for multi-scale feature maps. At the
same time, the regular stream refines multi-scale features (
i.e., C1, C2, C3 ) by applying the Skeleton Attention Mod-
ule. Finally, C1, C2, C3 are fed into the Decoder, as shown in
Fig. 3 (c). The C3 and C2 are first fused by up-sampling and
concatenation. The fused feature map is further up-sampled
to fuse with C1 in the same approach.

3.2. Skeleton Attention Module

Spatial and Channel Attention. Fig. 3 (b) illustrates the de-
tails of the two attention methods. Given an intermediate fea-
ture map F ∈ RC×H×W (i.e., the orange input in Fig. 3 (b))
and an skeleton map Fsm ∈ RC×H×W (i.e., the black in-
put in Fig. 3 (b)), spatial attention is first utilized to focus on
“where” is the text skeleton by multiplication and concatenat-
ing. The spatial attention is computed as:

F
′
= f3×3([F ⊗ Fsm;F ]) , (1)

where ⊗ denotes element-wise multiplication, and f3×3 rep-
resents a convolution operation with the filter size of 3 × 3.
Following the CBAM [10], the channel attention is utilized to
focus on “what” is meaningful given an input image by ex-
ploiting the inter-channel relationship of the feature. Global
pooling is first used to aggregate spatial information of the
feature map F

′
. Then, the fully connected layer is used to

connect different channels, as each channel of a feature map
is considered as a feature detector [24]. In short, a 1D channel
attention map Mc ∈ RC×1×1 can be obtained by feeding the
feature map F

′
into the GlobalPool-Fc-Relu-Fc-Sigmoid

layers. The final refined output from SAM can be computed
as: F

′′
= Mc ⊗ F

′
.

In practice, the predicted skeleton map Fsm is downsam-
pled to obtain multi-scale maps (i.e., 1/4, 1/8, 1/16), that are
transferred to the regular stream (the thick yellow arrow in
Fig. 3 (a)). And then, the extracted feature map (e.g., C1)
and the corresponding scale skeleton map are used as the in-
put of the Skeleton Attention Module. Note that the proposed
Skeleton Attention Module is shared for the high-level and
the low-level feature maps ( i.e., C1, C2, C3 ).

Skeleton Attention Map and Loss. Given an input sam-
ple (xi, yi) ∈ {(x1, y1), (x2, y2), ...(xn, yn)}, where xi and
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Fig. 3: The network architecture of Skeleton Attention Segmentation Network. (a) SASN is composed of two streams:
regular stream and skeleton stream. (b) Skeleton Attention Module is composed of channel attention and spatial attention,
which refine the input feature map by weighting with text skeleton map. (c) The detailed structure of the Decoder.

yi denote the i-th image and its labels. We use xk
i to denote

the k-th pixel of the i-th training image, with yki = 0 for the
background and yki = 1 for the text pixel. To learn stronger
representation of text skeleton, we define the text skeleton
ground-truth as a soft label. For the k-th pixel in the text
region of i-th image, we first calculate the shortest distance
dki between the k-th pixel to its nearest background pixel, and
then the value pki is defined as the soft skeleton label of k-th
pixel by normalizing dki to [0, 1]:

pki =
dki
d∗i

, (2)

where d∗i is the maximum value of {dki } in the i-th image.
Intuitively, the pixels close to the skeleton of the text in-

stance should have a greater value than the boundary pixels
(see text skeleton label in Fig. 3 (a)). Since the soft label is
a decimal representing the degree of distance, it is incompat-
ible with the commonly binary cross-entropy loss. Besides,
the L1 and L2 losses are not sensitive to the distance distribu-
tion among [0, 1] [15]. Therefore, to handle the soft label, we
modify the cross-entropy loss into a “soft” form. For a pixel
xk
i , pki denotes the value of the k-th pixel in the ground truth

skeleton map. F indicates networks. The soft cross-entropy
loss for text skeleton loss in Fig. 3 (a) is defined as follows:

Lske = −
∑
k

log(1−
∣∣∣pki −F(xk

i )
∣∣∣) , (3)

The whole loss function L for SASN can be expressed as
a weighted sum of the loss for the regular stream Lce (i.e.,
the commonly binary cross-entropy loss) and the loss for the

skeleton stream Lske:

L = Lce + λLske, . (4)

where λ is set to 2, which balances the importance between
Lske and Lce.

4. EXPERIMENTS

4.1. Ablation Study

Combining methods of Skeleton Attention. Tab. 2 shows
the impact of three submodules: channel, spatial, and skele-
ton attentions. It is clear that the improvement due to channel
attention is limited (i.e., +0.1%), but its spatial attention
counterpart contributes to better gain (i.e., +0.7%), the main
reason for this may be that spatial information is more im-
portant than semantic information for text segmentation task.
Another important contribution is the soft attention weight
map (i.e., Skeleton Map), the performance achieves further
improvement (i.e., +1.8%) after using the Skeleton Map.
This is in line with our expectations, and we argue that the
text skeleton is vital because of its high representation power.

4.2. Experiments on Scene Text Detection

Tab. 1 lists the results on the ICDAR2015, ICDAR2017 and
MSRA-TD500 datasets. For ICDAR2015 [26], PSENet with
pseudo label achieves almost the same performance (85.5%
v.s. 85.2%) with that using ground truth, proving the high
quality of the pseudo label generated by PF. By contrast,



Method Annotation Pre ICDAR2015/% MSRA-TD500/% ICDAR2017-MLT/% Total-Text/%
P R F P R F P R F P R F

Strong Supervision
CTPN[14] GT - 74.2 51.6 60.9 - - - - - - - - -
EAST[16] GT - 80.5 72.8 76.4 81.7 61.6 70.2 - - - - - -
PixelLink[25] GT - 82.9 81.7 82.3 83.0 73.2 77.8 - - - - - -
PSENet[1] GT - 81.5 79.7 80.6 - - - 73.7 68.2 70.8 81.8 75.1 78.3
PSENet[1] GT ✓ 86.9 84.5 85.7 - - - - - - 84.0 78.0 80.9
EAST† GT ✓ 82.0 82.4 82.2 77.9 76.5 77.2 70.3 62.8 66.4 - - -
PSENet† GT ✓ 86.4 84.0 85.2 84.1 85.0 84.5 72.5 69.1 70.8 83.4 78.1 80.7

Weakly Supervision
EAST b-GT ✓ 70.8 72.0 71.4 48.3 42.4 45.2 67.2 60.1 63.5 - - -
EAST+PF PL ✓ 81.3 82.2 81.8 77.4 75.5 76.4 67.6 64.9 66.3 - - -
PSENet b-GT ✓ 72.7 74.3 73.5 47.5 39.5 43.1 66.4 63.1 64.7 51.9 47.5 49.6
PSENet+PF PL ✓ 86.8 84.2 85.5 84.4 84.7 84.5 73.8 67.7 70.6 82.6 78.4 80.5

Table 1: The results of Polygon-free on ICDAR2015 [26], MSRA-TD500 [27], ICDAR2017-MLT [28], Total-Text [3]. †
refers to our testing performance. The ‘GT’, ‘b-GT’ and ‘PL’ refer to the ’Ground Truth’, ‘Upright Bounding Box Ground Truth’
and ‘Pseudo Label from SASN’, respectively. ‘P’, ‘R’, ‘F’ and “Pre” refer to ‘Precision’, ‘Recall’, ‘F-score’ and ‘pretraining
on SynthText’, respectively. In green (strong supervision) and in bold (Polygon-free) are highlighted for comparison.

Method Evaluation on Total-Text/%
Precision Recall F-score

BL 80.5 73.2 76.7
BL+SA(Cha) 79.8 74.0 76.8(+0.1)
BL+SA(Cha&Spa) 80.3 74.6 77.4(+0.7)
BL+SA(Cha&Spa&Skeleton Map) 81.7 75.6 78.5(+1.8)

Table 2: Combining methods of Skeleton Attention. ‘SA’,
‘BL’, ‘Cha’ and ‘Spa’ refer to ‘Skeleton Attention’, ‘Base-
line’, ‘Channel’ and ‘Spatial’.

direct training the detector with upright bounding box ob-
tains an unsatisfactory F-score (73.5%), with a performance
gap of more than 10%. For MSRA-TD500 [27], annotations
are provided at the line level, including the spaces between
the words in the box. Therefore, bounding box on MSRA-
TD500 usually contains a large background, causing poor
performance (45.2% for EAST and 43.1% for PSENet). In
this case, PSENet with pseudo label (84.5%) achieves a
huge improvement (+41.4%) compared to training directly
with upright bounding box (43.1%). For Total-Text [3],
Tab. 1 lists the experimental results. The annotation on
Total-Text is complex and polygonal in shape. The great
performance (80.5%) of Polygon-free further demonstrates
the significance of our work, and Fig. 4 provides the visual-
ization of ground truth and pseudo label. Similar to MSRA-
TD500, the upright bounding box on Total-Text also contains
plenty of backgrounds, causing poor performance (45.0%
and 49.6%). Using pseudo label generated by SASN can
still achieve excellent performance (78.5% and 80.5%) with
improvements of 33.5% and 30.9%.

Weakly supervision v.s. Strong supervision. To fur-
ther present the effectiveness of Polygon-free, we summa-
rized the results concerning three detectors (i.e., PSENet [1],
EAST [16] and DB [7]) and seven datasets (i.e., ICDARs,
Total-Text) to Table 3. As a plug-and-play weakly-supervised
approach, the F1 of PF achieves 6.6%∼ 35.5% improvements
than directly training with upright bounding box (two points),
almost equal to strong-supervised methods. This means that
the proposed method can be directly applied for industry ap-

Datasets Cited Methods F1▲/% F1⋆/% F1†/%

ICDAR2015 624 EAST 64.8 78.0 (+13.2) 76.4
PSENet 73.5 85.5 (+12.0) 85.7

MSRA-TD500 630 EAST 35.2 70.7 (+35.5) 70.2
ICDAR2017MLT 128 PSENet 64.2 70.8 (+6.6) 70.8

Total-Text 142 PSENet 49.6 80.5 (+30.9) 80.9
DB 49.1 84.5(+35.4) 84.7

CTW1500 105 PSENet 47.6 81.5(+33.9) 82.2
ICDAR2019LSVT 6 PSENet 57.3 77.6(+20.3) 77.4
ICDAR2019ArT 13 PSENet 46.6 69.2(+22.6) 69.5

Table 3: Weakly supervision v.s. Strong supervision. ▲, ⋆
and † refer to ‘Upright Bounding Box’, ‘Polygon-free(ours)’
and ‘Original Paper Report or our testing result’.

Fig. 4: Visualization of pseudo labels from PF.

plication with a little loss (i.e., < 0.5%) of performance when
no need for any modification. The competitive performance
of PF proves the practicability efficiency of the pseudo label.
Fig. 4 gives some visualization of the pseudo label.

5. CONCLUSION

In this paper, we present a simple but effective system termed
Polygon-free, in which most existing polygon-based text
detectors are trained with upright bounding box. The core
is to transfer knowledge from synthetic to real data to en-
hance the supervision information via a skeleton attention
segmentation network. The experiments showed that our
method achieves almost the same performance as that of
strong supervision while saving huge annotation cost, which
can provide a new perspective for weakly supervised text
detection.
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