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ABSTRACT

In this paper, we propose a novel physics-informed deep
learning architecture for predicting radio maps over lunar
terrain. Our approach integrates a physics-based lunar ter-
rain generator, which produces realistic topography informed
by publicly available NASA data, with a ray-tracing en-
gine to create a high-fidelity dataset of radio propagation
scenarios. Building on this dataset, we introduce a triplet-
UNet architecture, consisting of two standard UNets and a
diffusion network, to model complex propagation effects.
Experimental results demonstrate that our method outper-
forms existing deep learning approaches on our terrain dataset
across various metrics. The project website is available at:
https://radiolunadiff.github.io/.

Index Terms— Radio maps, diffusion models, Helmholtz,
lunar communications

1. INTRODUCTION

The NASA proposed lunar exploration communication frame-
work, LunaNet [1]], will require prediction of wireless net-
work properties to facilitate reliable and robust communi-
cation. In a lunar environment, LunaNet is designed as a
cooperative network infrastructure composed of multiple in-
teroperable elements, where nodes communicate with neigh-
bors and relay data at the appropriate link or network layers.
Of particular importance are Radio Maps (RMs), which de-
scribe the spatial distribution of wireless channel attenuation
for a given frequency, environment, and transmitter location.

For example, RMs can help mission planners create
attenuation-aware trajectories or determine the shortest path
to reconnection in cases of signal loss or degradation. Relay-
ing rovers can also leverage RMs to maintain adequate signal
quality when transmitting large data payloads, reducing en-
ergy consumption and communication latency.

Navigation is a key pillar of LunaNet, enabling the re-
liable fulfillment of safety, situational awareness, communi-
cation, and scientific objectives. Similar to GPS-RTK sys-
tems on Earth—where base stations provide correction data
for centimeter-level accuracy—Ilunar rovers could use RMs
to maintain robust data links with landers or beacons acting
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Fig. 1: (a) Predicted k2 probability map over lunar surface,
(b) Corresponding model prediction of radio map at 5.8 GHz.

as reference nodes. In addition, RMs can support network
reliability for critical services such as space weather monitor-
ing and timely dissemination of solar eruption alerts. Such
information is essential for protecting both equipment and as-
tronauts.

Extensive prior research on wireless signal propagation
has focused on predicting radio maps (RMs) in urban environ-
ments using deep neural networks. Leveraging simulation-
based datasets, these studies have demonstrated that neural ar-
chitectures can accurately estimate signal strength in complex
scenes. More recently, researchers have employed physics-
informed neural networks (PINNs) based on the Helmholtz
equation to better model complex electromagnetic wave prop-
agation, such as diffraction and interference, in dense environ-
ments.

In this work, we propose a novel triplet UNet PINN archi-
tecture that integrates the Helmholtz equation by modeling
wave propagation over the terrain surface. Using a custom
lunar terrain generator, we construct a simulation dataset and
train a UNet to predict spatial variations in the square wave
number, k2, enabling the identification of electromagnetic
field discontinuities induced by terrain geometry. This pre-
dicted k2-map is then used as input to a second UNet chained
to a diffusion model, both tasked with predicting the RM at
either a low or high communication frequency, effectively
incorporating terrain-induced propagation effects into the
signal strength estimation process. We make the following
contributions:
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Fig. 2: Proposed system architecture.
Note: RMs shown in figure represent 5.8 GHz.

* A lunar terrain generator that synthesizes realistic to-
pography based on publicly available lunar elevation
data.

* A novel physics-informed, diffusion-based model ar-
chitecture for predicting radio maps over varying ter-
rain at multiple frequencies.

2. RELATED WORKS

Traditional wireless propagation models, such as Rayleigh
and TWDP Fading, estimate RMs in a statistical sense, sacri-
ficing knowledge of the location of wireless hotspots and re-
gions of attenuation for a simplified model that can only out-
put a probability. While these models are effective in commu-
nications system design, applications such as localization and
navigation require more detailed location information, lead-
ing to the development of methods that spatially sample and
interpolate wireless channel attenuation [2]]. Unfortunately,
this dense spatial sampling is often infeasible, leading recent
research to focus on sampling-free methods like simulation.

Deterministic models such as ray tracers for radio prop-
agation modeling, based on approximations of the Maxwell
equations, have become increasingly precise and are widely
used both commercially and in research [3]. However, even
with advances in efficiency and GPU acceleration, ray trac-
ers remain computationally complex, leading researchers to
explore deep learning for RM approximation.

One of the first successful approaches to deep learning-
based RM estimation was RadioUNet, which applied the
UNet architecture to predict RMs using a map of building
structures and the location of the transmitter [4]. Another
notable adaptation, PMNet, modified the traditional convolu-
tional blocks of the UNet to incorporate atrous convolutions
for improved feature extraction [5]]. More recently, following
trends in image generation, highly precise RM construction
models have leveraged diffusion architecture [6] [7] [8].

Most existing deep learning approaches for radio map
(RM) construction have been developed for planar environ-
ments, typically using simplified geometric descriptions of
urban layouts represented by binary building maps. In con-

trast, this work focuses on non-planar RMs defined over com-
plex lunar terrain, where elevation and surface irregularities
play a dominant role in wave propagation. Prior efforts in this
domain have been limited, often relying on simplified mod-
els such as the two-ray approximation for RM construction
[9], which cannot fully capture the diffraction, refraction,
shadowing, and scattering effects inherent to rugged lunar
topography.

3. METHODS
3.1. Helmholtz Equation and Laplace-Beltrami Operator

In this work we apply the Helmholtz Equation applied over a
surface
AME(x) + K (x) E(x) = —f(x), (1)

where F(x) is the complex electric field, k%(x) is the
wave number, f(x) is the source term, and A, is the
Laplace-Beltrami operator defined over the Riemannian man-
ifold M. The Laplace-Beltrami operator is a generalization
of the Laplace operator that works on arbitrary surfaces, as
opposed to the Laplace operator which can only be used in
Euclidean spaces [10] [11].

3.2. System Overview

We propose a pipeline of three cascaded models—two UNets
followed by a diffusion network (Fig. Z)—to predict a radio
map Iryr € RE*W . The input to the pipeline is denoted by
X and consists of: (i) a height-map image 77y, € RE*W,
(ii) a high-pass filtered height map Irps € RH*W (ii) a one-
hot encoded image indicating the transmitter location I, €
{0, 1}>*W "and (iv) a boolean image flag I, € {0, 1}1*W
which is all O to indicate a 415 MHz target frequency and all
1 for 5.8 GHz.

Next, we derive the square wave number map k?(x), rep-
resented in discrete form as Ixp; € R¥*W . by adapting
RadioDiff-£? [8] for surface data by rearranging (). In prac-
tice, the source term f(x) is determined by the transmitter
location, which is not on the surface the electric field is de-
fined on and therefore it is ignored.



Let Iz € RT*W denote the complex electric field on
the terrain surface. Since the radio map Iy, is a scalar field
proportional to the squared field magnitude, Irps(7,5) o<

|I5(i, 7)|?, we approximate k2 as:
o —Awmle(ig)
I = — 2
K, 7) (i, ) @)

In practice, we utilize PyTorch and its auto-differentiable ca-
pabilities to derive the I 5 [12]. The final step is to convert
the KMs into binary values with pixels with values < 0 being
set to 1, and all non-negative pixels being set to 0.

Using Igras, Irnr, Irg, and Iy, as inputs, the first UNet,
fo,, estimates I ¢ according to the formulation in . The
second UNet, fy,, takes as input these three maps together
with the predicted I v from the first UNet to estimate I RM -
Finally, the third model, a Denoising Diffusion Probabilis-
tic Model (DDPM) denoted fy, estimates the residual map 7.
The final prediction is reconstructed as:

IR = Iro, + 7o, 3)

Stage 1: Physics-informed diffusion for wave number
prediction. The first UNet, fy,, estimates the binary square
wave number map I ar from X and is trained with Binary
Cross-Entropy (BCE) loss against the ground-truth g s,

| AW A
L= D [BCE(IKM,iijKMyij)]‘ “4)

i=1 j=1

which compels the model to output a probability map Ixm.
Each pixel in this map represents the model’s confidence that
a k? discontinuity is present. While this map could be bina-
rized using a 0.5 threshold, we retain the continuous prob-
abilities as a soft” input for the subsequent stage, thereby
preserving the model’s uncertainty.

Stage 2: Initial Radio Map Prediction. The second
UNet, fs,, produces an initial estimate of the radio map
I RrRM,0, from the inputs X and the predicted square wave
number map Ix M,6, - The model is trained by minimizing the
Mean Squared Error (MSE) loss:

H W
1 A
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Stage 3: Diffusion for Residual Refinement. In the final
state, we utilize the architecture DDPM as proposed by Ho et
al. [13] and used in [[6] to act as a refinement model. The
model, fg,, which refines the initial radio map by predicting
the residual » = Igpy — I RM,0,. 1ts UNet core Uy, takes a
noisy residual r; at timestep ¢ together with conditioning in-
puts ¢ = (X, Ix M,01 5 Ir M6, ), and predicts the velocity vpreq.
The model is trained with a hybrid objective that combines
velocity prediction [14] and residual reconstruction:

['3 = »Cv + )\Erecona (6)

where the MSE between the true velocity v and the network’s
prediction, vVpyed, is

Ly =Erepcfllv—Usy(re,t,c)|?], (7)

and the MSE between the true residual r and the predicted
residual , 7g,, is

Lrecon = Er,e,t,c [”T(X) - 7203 ||2] . ()
The predicted residual is obtained from the velocity estimate
as
7293 =V — v 1- Qi Upred- (9)
Overall objective. The final loss is:
Liow = L1+ Lo +  Ls . (10)
~ ~ ~

Stage 1: k2 map  Stage 2: radiomap  Stage 3: residual

UNet Architecture, Training and Inference. fy, is im-
plemented using a custom UNet, fy, is implemented by mod-
ifying the architecture from PMNet [5], and fp, is imple-
mented via architecture provided by the Hugging Face Dif-
fusers python library [[15]. Each stage is trained separately,
with gradients from L5 blocked from flowing into 6, by the
stop-gradient on I x M» and gradients from L3 blocked from
flowing into #5 and 6, by the stop-gradient on Ira. Atinfer-
ence, we first generate I v using fp, and then condition fp,
on I K M to produce I rM, and finally condition fp, on I KM
and Iy to produce 7, finally reconstructing I5in!,

4. EXPERIMENTAL SETUP AND DATASETS
4.1. Lunar Terrain Height Map Generation

Lunar terrain is dominated by impact craters and the geomor-
phic consequences of cratering. We generate synthetic lunar
terrains following Appendix C of Cai and Fa [16] with numer-
ical details following [17] [18] [19]. Specifically, we alter-
nate between (i) simulating a subset of cratering events corre-
sponding to a fraction of the target surface age and (ii) apply-
ing diffusion over that same interval. Iterating these two steps
until the total age is reached yields complex terrains contain-
ing both fresh, sharply defined craters and older, highly de-
graded craters.

4.2. Sionna Simulation Dataset

We built our dataset using Sionna-RT, an open source ray-
tracer for radio propagation modeling [3]]. Based on LunaNet
specifications we choose frequencies 5.8GHz and 415MHz
[20]. Ray-tracing methods are inherently limited by the fi-
nite number of discretized rays, which often results in radio
maps with null pixels. To mitigate this, we randomize the
seed and recompute each map instance multiple times. Bilin-
ear interpolation was used to complete 415 MHz maps, which
exhibited scattered data gaps, while a static fill was applied to
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Fig. 3: Qualitative comparison of generated radiomaps at 415 MHz.

5.8 GHz maps, which contained large contiguous voids and
few scattered points.

The electromagnetic properties of lunar regolith—relative
permittivity eﬁeg (real part) and electrical conductivity o—are
taken from NASA specifications [3].

5. EVALUATION AND RESULTS

5.1. Metrics

We evaluate pixel-wise performance using the root mean

squared error (RMSE), normalized mean squared error (NMSE),

structural similarity index (SSIM) and peak signal-to-noise
ratio (PSNR), as used in [21]] [6] [8]].

5.2. Quantitative Results

To evaluate our model, we compared it against neural net-
work—based RM prediction methods that could be easily re-
trained with our dataset. Specifically, we selected PMNet [5]
and RadioUNet [4]. PMNet achieved the best performance
in the First Pathloss Radio Map Prediction Challenge [21]],
while RadioUNet was among the first and most effective NN-
based RM prediction models. More recent architectures such
as RMDM [7]], RadioDiff [6], and RadioDiff-k? [§] leverage
diffusion models but require substantial modification for our
terrain setting or do not yet have publicly available code.

We evaluated all models at 415 MHz, 5.8 GHz and on
combined results across both bands. Table[T|reports the quan-
titative metrics, where our method consistently outperforms
the baselines across all metrics, with the greatest difference
in SSIM and PSNR. In particular, our approach yields lower
error and better structural fidelity, demonstrating its superior-
ity over PMNet and RadioUNet. We performed an ablation
study by either removing the final residual diffusion step (w/o
Diff) or replacing the residual target with the RM itself (RM
Diff). As shown in Table[T] both modifications degraded per-
formance compared to our full model.

A qualitative comparison further highlights the advan-
tages of our model. As shown in Fig.[3] our predictions pre-
serve fine geometric details and accurately localize electro-
magnetic singularities, especially in low-connectivity regions
such as craters and terrain shadowed by hills. In contrast, the
baseline methods tend to blur sharp features in the radio map

or misplace singularities, leading to degraded interpretability
and less reliable coverage prediction.
Table 1: Quantitative Comparison of Models.

Note: Results in bold-underlined and underlined represent the best
and second best scores, respectively.

| Comparative Ablation
Radio- w/o RM
Methods UNet PMNet Diff Diff Ours
415 MHz |
NMSE | .001060 .000869 .000820 .000898 .000795
RMSE .0243 .0220 .0214 .0224 0211
SSIM 1 .8810 .8867 0.9035  0.8975 9069
PSNR 1 33.54 34.26 34.77 34.53 35.40
58 GHz |
NMSE .00339  .00258  .00264  .00270  .00248
RMSE .0354 .0309 .0312 .0315 0302
SSIM 1 8826  0.8898 .9009 .9014 0.9067
PSNR 1 30.35 31.39 31.64 32.10 32.65
Both |
NMSE .00223  .00172  .00173  .00180  .00164
RMSE .0299 .0265 .0263 .0270 0257
SSIM 1 .8818 .8883 .9022 .8995 9068
PSNR t 31.95 32.83 33.20 33.32 34.03

6. CONCLUSION

In this work, we presented a physics-informed deep learning
framework for predicting radio maps over complex lunar ter-
rain. Our approach integrates a synthetic lunar terrain gener-
ator with a ray-tracing pipeline to construct training datasets,
and introduces a physics based triplet-UNet architecture com-
posed of two UNets and a diffusion model. Experimental
results on simulated lunar data demonstrate that our method
improves accuracy over baseline deep learning models. Fur-
thermore, we carried out ablation studies to show the need for
the k2 map. The ability to generate reliable radio maps over
lunar terrain supports future communication-aware mission
planning for the LunaNet framework.
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