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ABSTRACT

Finite Scalar Quantization (FSQ) offers simplified training
but suffers from residual magnitude decay in multi-stage set-
tings, where subsequent stages receive exponentially weaker
signals. We propose Robust Residual Finite Scalar Quantiza-
tion (RFSQ), addressing this fundamental limitation through
two novel conditioning strategies: learnable scaling fac-
tors and invertible layer normalization. Our experiments
across audio and image modalities demonstrate RFSQ’s ef-
fectiveness and generalizability. In audio reconstruction at
24 bits/frame, RFSQ-LayerNorm achieves 3.646 DNSMOS,
a 3.6% improvement over state-of-the-art RVQ (3.518). On
ImageNet, RFSQ achieves 0.102 L1 loss and 0.100 percep-
tual loss, with LayerNorm providing 9.7% L1 improvement
and 17.4% perceptual improvement over unconditioned vari-
ants. The LayerNorm strategy consistently outperforms al-
ternatives by maintaining normalized input statistics across
stages, effectively preventing exponential magnitude decay
that limits naive residual approaches. RFSQ combines FSQ’s
simplicity with multi-stage quantization’s representational
power, establishing a new standard for neural compression
across diverse modalities.

Index Terms— Neural compression, finite scalar quanti-
zation, residual quantization, audio coding, image compres-
sion

1. INTRODUCTION

Vector quantization has been a cornerstone of neural com-
pression since the foundational work of Gray [1]], establishing
the theoretical framework for discrete representation learn-
ing in neural networks. The introduction of VQ-VAE [2]
marked a paradigm shift by revolutionizing discrete repre-
sentation learning, enabling end-to-end training of quantized
neural networks while maintaining differentiability through
straight-through estimators. Despite its groundbreaking con-
tributions, traditional VQ methods encounter persistent chal-
lenges including codebook collapse phenomena, training in-
stability issues, and the necessity for carefully tuned auxiliary
losses to maintain codebook utilization [3]].

Finite Scalar Quantization (FSQ) [4] simplifies quantiza-
tion by independently quantizing each dimension to predeter-
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mined values, eliminating learnable codebooks while main-
taining high-quality reconstruction. FSQ has shown success
in speech synthesis [5,/6], speech recognition [7[], and low-
bitrate coding [8]].

Limitations and OQur Approach: Despite these suc-
cesses, FSQ faces a fundamental limitation: its fixed, axis-
aligned quantization boundaries may not optimally capture
complex data distributions. While residual quantization could
theoretically address this through progressive refinement,
naive application suffers from the residual magnitude de-
cay problem, where subsequent stages receive progressively
weaker signals, severely limiting their effectiveness.

Our Contributions.

1. We identify and analyze the residual magnitude decay
problem in naive residual FSQ implementations, pro-
viding theoretical and empirical evidence of its impact.

2. We propose two novel conditioning strategies—learnable
scaling and invertible LayerNorm—that robustly ad-
dress this problem while maintaining FSQ’s simplicity.

3. We conduct comprehensive experiments on both audio
and image reconstruction tasks, demonstrating signifi-
cant improvements over strong baselines.

4. We establish RFSQ as a general framework applicable
to various architectures and modalities, with consistent
performance gains.

2. RELATED WORK

Vector quantization [2}|3]] established discrete representation
learning but suffers from codebook collapse and training in-
stability [9]. FSQ [4] eliminates codebook learning by quan-
tizing dimensions independently to predefined levels, show-
ing success in image generation [[10] and speech synthesis [5}
6.

Residual VQ [11}/12] applies hierarchical quantization
for fine-grained detail capture. EnCodec [12] demonstrates
RVQ’s effectiveness for audio compression. However, naive
residual FSQ suffers from magnitude decay, limiting subse-
quent stages’ effectiveness.



3. METHOD

3.1. Background: Finite Scalar Quantization

FSQ quantizes a d-dimensional vector z € R? by indepen-
dently quantizing each dimension to a finite set of levels. For
dimension ¢ with L; levels:

ey

FSQ,(z;) = round <Zi (L — 1)) 2

2 L —1

The total codebook size is H?:l L;, with code rate
Zle log,(L;) bits per token.

3.2. Naive Residual FSQ and Its Problems

A straightforward extension applies FSQ residually across K
stages:

q1 =FSQ,(z), ri=z—-q 2
qr = FSQp(rp—1), T =rp_1— 3

A critical issue emerges in this naive approach: the resid-
ual magnitude decay problem. As quantization progresses,
we observe that ||ry|| < ||rg—1]|, causing subsequent FSQ
layers to operate on extremely weak signals. Empirically, we
find residual magnitudes decay exponentially: |rx| ~ o z||
where o < 0.3. This severely limits their quantization effec-
tiveness since FSQ’s fixed boundaries become increasingly
mismatched with the residual distribution. For instance, if
FSQ boundaries are designed for unit-scale inputs, but rz has
magnitude 1073, the effective quantization resolution is re-
duced by three orders of magnitude.

3.3. Robust RFSQ Framework

To address residual decay, we propose two complementary
conditioning strategies that maintain the simplicity of FSQ
while enabling effective multi-stage quantization.

Our first strategy introduces learnable scaling factors that
adaptively amplify residual signals before quantization:

qr = FSQg (g - ri—1) “)
rp =Trp_1 —qi/ag (5)

where the scaling factors oy, are learned parameters initial-
ized to 1.0. This approach allows each stage to adapt to the
magnitude of its input while maintaining perfect reconstruc-
tion through inverse scaling.

The second strategy employs invertible layer normaliza-
tion to stabilize the input distribution:

rr—1 = LayerNorm(ry_1) 6)
qr = FSQy(Tr—1) @)
ry, =Tp_1 — LayerNorm_l(qk) 8)

Algorithm 1 Robust Residual Finite Scalar Quantization
RHXWxD

Require: Inputz € , stages K, strategy
Ensure: Quantized features qy, indices {11, ...
1: Initialize rg = Z, Qiota = 0
2: for k =1to K do
3: if k =1 then
4 ak, I = FSQy(rr—1) {No conditioning}
5: Ty =Tr—1 —dk
6:  else if strategy == ’scale” then
7
8
9

aIK}

qr, I = FSQp (o - T1—1)
ry =—rg—1— Qk/ak

. elseif strategy == "layernorm” then
10: r;—1 = LayerNorm(rj_1)
11: Qk7Ik :FSQk(f‘k_l)
12: I, =Tp_1 — LayerNorm_l(qk)
13:  else
14: qr, Ix = FSQ(rx—1)
15: Ty =Tk—1 —dk
16:  end if
17: Qrotal = Yrotal T Ak
18: end for

19: return quop, {11, .., Ix}

This normalization ensures consistent input magnitudes
across stages while preserving invertibility for perfect re-
construction.

Algorithm|1|presents the complete framework.

4. EXPERIMENTS

We evaluate RFSQ on two challenging modalities: large-scale
audio reconstruction and image compression, demonstrating
its effectiveness and generalizability. Code is available at
https://github.com/zhuxiaoxuhit/robust_
rfsq.

4.1. Audio Reconstruction Experiments

We evaluate RFSQ on a large-scale audio reconstruction task
using the Emilia dataset [13]], which provides diverse multi-
lingual speech content. All audio is downsampled to 24kHz to
balance computational efficiency with perceptual quality. Our
encoder-decoder architecture follows the EnCodec [12] de-
sign principles, employing a compression ratio of 320 (from
24kHz to 75Hz latent representation) with 128-dimensional
bottleneck features. This architecture has proven effective for
high-quality neural audio compression.

All quantization methods are evaluated under a unified 24
bits/frame constraint to ensure fair comparison. The training
objective combines multiple complementary loss terms that
capture different aspects of audio quality:
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Table 1: DNSMOS Evaluation Results (24 Bits/Frame)

Method Config DNSMOS vs. RVQ
Traditional Baselines

VQ-EMA-4x64-PQ  4x64 PQ 2.687 £0.468 -23.6%
LFQ-24D 24-dim 2.814 £0.437 -20.0%
FSQ-4D-Uniform  [64,64,64,64] 2.965+0.383 -15.7%
State-of-the-Art

RVQ-4x64 4-stage 3.518 £ 0.281  +0.0%
RFSQ Variants

RFSQ-2S-NU-LN 2-stage LN 3.2890 £0.296  -6.5%
RFSQ-4S-NU-No  4-stage None 3.187 +0.319 -9.4%
RFSQ-4S-NU-Scale 4-stage Scale 3.421 +0.274  -2.8%
RFSQ-8S-Uni-LN 8-stage LN  3.356 £ 0.262  -4.6%
RFSQ-4S-Uni-LN 4-stage Uni  3.598 £0.258 +2.3%
RFSQ-4S-NU-LN  4-stage LN 3.646 +0.251 +3.6%

L :)\time”X - )A(Hl + st LsTET + )\specﬁspec
+ Aadvﬁadv + Afeatﬁfeat (9)

where Aime = 1.0, At = 1.0, Agpec = 0.1, Aagy = 1.0,
and Agye = 2.0. These weights were determined through ex-
tensive validation to balance reconstruction fidelity with per-
ceptual quality.

We compare RFSQ against a comprehensive set of base-
lines and variants. The traditional baselines include vector
quantization with exponential moving average using product
quantization (VQ-EMA-4x64-PQ: 4 subvectors with code-
book size 64 each), lookup-free quantization (LFQ-24D: 24-
dimensional learnable quantization), and single-stage FSQ
(FSQ-4D-Uniform: 4 dimensions with levels=[64,64,64,64]).
The state-of-the-art baseline is residual vector quantization
(RVQ-4x64: 4 stages with codebook size 64 each).

For RFSQ, we evaluate six carefully designed variants.
The 4-stage non-uniform configuration (RFSQ-4S-NU-LN)
uses a “front-heavy” bit allocation: Stage 1 with 8 bits (lev-
els=[16,16]), Stage 2 with 6 bits (levels=[8,8]), and Stages 3-4
with 5 bits each (levels=[8,4]). This design allocates more bits
to early stages where signal magnitude is highest. We com-
pare this against uniform allocation (RFSQ-4S-Uni-LN: 4
stages with 6 bits each, levels=[8,8]) to validate our allocation
strategy. The conditioning strategy ablation includes Layer-
Norm (RFSQ-4S-NU-LN), Scale (RFSQ-4S-NU-Scale), and
None (RFSQ-4S-NU-No) variants. Finally, we explore dif-
ferent granularities: fine-grained 8-stage (RFSQ-8S-Uni-LN:
8 stages with 3 bits each, levels=[4,2]) and coarse-grained 2-
stage (RFSQ-2S-NU-LN: Stage 1 with 14 bits using 3D lev-
els=[32,32,16], Stage 2 with 10 bits using levels=[16,16,4]).

Table [T] and Figure [I] present the DNSMOS [[14] evalu-
ation results across all methods. The results reveal several
important insights about the effectiveness of our proposed ap-
proach.

RFSQ-4S-NU-LN achieves DNSMOS 3.646, a 3.6% im-
provement over RVQ (3.518), with only 4.3% degradation
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Fig. 1: DNSMOS evaluation results. Box plots show score
distributions, with RFSQ variants (blue) consistently outper-
forming traditional baselines. Red dashed line indicates orig-
inal audio quality (3.810).

from original audio (3.810). The non-uniform bit allocation
(8, 6, 5, 5 bits per stage) effectively captures signal energy
distribution, where early stages encode dominant components
while later stages refine details. LayerNorm conditioning pro-
vides a substantial 14.4% gain over unconditioned variants
(3.646 vs. 3.187), empirically validating our theoretical anal-
ysis of residual magnitude decay. Scale conditioning achieves
intermediate performance (3.421), suggesting that adaptive
normalization better addresses cross-stage magnitude varia-
tions than simple scaling.

The 4-stage configuration emerges as optimal, balanc-
ing quantization precision with error accumulation. Fewer
stages (2-stage: 3.289) lack sufficient representational ca-
pacity, while excessive stages (8-stage: 3.356) accumulate
quantization errors that degrade overall quality. This finding
aligns with our theoretical framework: each stage introduces
bounded error e, and total error grows as O(vK) for K
stages.

All single-stage baselines exhibit severe performance
degradation: VQ-EMA (-23.6%), LFQ (-20.0%), FSQ (-
15.7%). This consistent gap demonstrates the fundamental
limitation of single-stage quantization in capturing the multi-
scale nature of audio signals, validating the necessity of
residual decomposition for high-quality reconstruction under
tight bit constraints.



Table 2: RFSQ Performance on ImageNet

Method Bits L1] LPIPS| PSNR?

22.0-bit Configurations

RFSQ-2x2048-None 22.0 0.130 0.159 21.1
RFSQ-2x2048-Scale 22.0 0.122  0.152 21.5
RFSQ-2x2048-LN  22.0 0.124 0.148 21.3
40.0-bit Configurations

RFSQ-4x1024-None 40.0 0.113  0.121 222
RFSQ-4x1024-Scale 40.0 0.103  0.101 229
RFSQ-4x1024-LN  40.0 0.102  0.100 229

4.2. Image Reconstruction Experiments

To demonstrate the generalizability of RFSQ beyond audio
applications, we conduct comprehensive experiments on im-
age reconstruction using the ImageNet dataset [[15]]. We eval-
uate six RFSQ configurations at 128x128 resolution, system-
atically comparing different bit rates (22.0 and 40.0 bits) and
conditioning strategies to understand their impact on visual
quality.

Our encoder-decoder architecture employs a symmetric
design with two downsampling layers in the encoder us-
ing 4x4 convolutional kernels with stride 2, followed by a
1x1 convolution for dimension adjustment, transforming the
128%128 input to 32x32 feature representations. The decoder
mirrors this structure with transposed convolutions for up-
sampling. We employ a combination of L1 reconstruction
loss and LPIPS perceptual loss [[16]:

£ = M\||x — %||; + A,LPIPS(x, %) (10)

where \; = )\, = 1.0 for equal weighting between pixel-
level accuracy and perceptual quality.

Figure [2] shows 40-bit RFSQ achieves superior detail
preservation over 22-bit variants. The bit budget increase
(22—40) provides larger gains than conditioning strategies
alone, though conditioning remains crucial at lower bit rates.

Table[2]reveals a nuanced relationship between bit budget
and conditioning strategies. While increasing bits from 22 to
40 yields substantial improvements (e.g., L1 loss reduction
from 0.113 to 0.102 for LayerNorm), the choice of condition-
ing strategy can achieve comparable gains without additional
bits. At40 bits, LayerNorm conditioning improves L1 loss by
9.7% (0.102 vs. 0.113) and perceptual loss by 17.4% (0.100
vs. 0.121) compared to no conditioning, demonstrating that
intelligent residual processing is as critical as raw capacity.

5. CONCLUSION

We propose Robust Residual Finite Scalar Quantization
(RFSQ), a novel framework addressing the fundamental
residual magnitude decay problem through intelligent con-
ditioning strategies. Our experiments demonstrate RFSQ’s

Fig. 2: Visual quality comparison.

From top:
RFSQ-2x2048-LN (22.0 bits), RFSQ-4x1024-LN (40.0 bits),
RFSQ-4x1024-None (40.0 bits).

original,

effectiveness across modalities: 3.6% DNSMOS improve-
ment in audio and significant gains in image quality (9.7%
L1, 17.4% perceptual improvement at 40 bits).

The LayerNorm strategy’s superiority stems from main-
taining consistent input statistics across stages, counteract-
ing exponential magnitude decay. By normalizing residuals
before each quantization stage, RFSQ ensures all stages
contribute meaningfully, unlike traditional methods where
later stages encode mainly noise. This addresses the core
challenges of magnitude decay and inter-stage dependen-
cies. The consistent improvements across diverse datasets
and modalities validate RFSQ’s robustness and broad appli-
cability. RFSQ serves as a plug-and-play module for neural
compression, combining FSQ’s simplicity with multi-stage
quantization’s effectiveness. Future work includes adaptive
stage allocation and video compression applications.
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