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ABSTRACT

Self-supervised speech models learn representations that
capture both content and speaker information. Yet this
entanglement creates problems: content tasks suffer from
speaker bias, and privacy concerns arise when speaker iden-
tity leaks through supposedly anonymized representations.
We present two contributions to address these challenges.
First, we develop InterpTRQE-SptME (Timbre Residual
Quantitative Evaluation Benchmark of Speech pre-training
Models Encoding via Interpretability), a benchmark that
directly measures residual speaker information in content
embeddings using SHAP-based interpretability analysis. Un-
like existing indirect metrics, our approach quantifies the
exact proportion of speaker information remaining after dis-
entanglement. Second, we propose InterpTF-SptME, which
uses these interpretability insights to filter speaker informa-
tion from embeddings. Testing on VCTK with seven models
including HuBERT, WavLM, and ContentVec, we find that
SHAP Noise filtering reduces speaker residuals from 18.05%
to nearly zero while maintaining recognition accuracy (CTC
loss increase under 1%). The method is model-agnostic and
requires no retraining.

Index Terms— Speech pre-trained models, speaker dis-
entanglement, interpretability, SHAP, privacy

1. INTRODUCTION

Recent advances in self-supervised speech pre-trained models
such as wav2vec 2.0 [[1]], HuBERT [2], and WavLM [3]] have
revolutionized speech processing. These models learn rich
representations that capture various aspects of speech includ-
ing content, speaker identity, and paralinguistic information
across different layers [4].

But there’s a problem: these models mix content and
speaker information in ways that hurt performance. When
doing ASR, leftover speaker traits cause errors and biases.
Privacy is another concern—speaker identity often leaks
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through “anonymized” representations, which matters for
initiatives like VoicePrivacy [5].

Existing solutions like ContentVec [6] use elaborate train-
ing schemes with voice conversion and contrastive learning.
But they have two major limitations: no direct way to mea-
sure how well they separate speakers, and they need custom
architectures and training procedures.

We tackle both problems using interpretability. SHAP [7]]
explanations don’t just show what models do—they can guide
how to fix them. By analyzing which embedding dimensions
contribute to speaker identification, we can measure and then
remove speaker information. Our contributions are:

* InterpTRQE-SptME benchmark: the first direct met-
ric for speaker residuals in content embeddings, using
SHAP to quantify what previous work could only esti-
mate indirectly

¢ InterpTF-SptME filtering: a practical method that uses
interpretability insights to remove speaker information
post-hoc, requiring no model retraining

» Evidence from seven models that our approach works
universally, with SHAP Noise reducing residuals to 0%
while maintaining recognition accuracy

2. RELATED WORK

Self-supervised learning has transformed speech representa-
tion learning in recent years. Wav2vec 2.0 [1] introduced
masked prediction with contrastive loss, while HuBERT [2]]
employs iterative clustering to predict masked acoustic units.
WavLM [3]] extends these approaches with denoising objec-
tives to improve speaker-related tasks, and DPHuUBERT [8]]
focuses on efficiency through distillation and pruning.
Efforts to separate speaker and content information have
explored various architectural constraints. AutoVC [9] en-
forces information bottlenecks to limit speaker leakage,
while ContentVec [6] achieves state-of-the-art disentangle-
ment through teacher-student training with explicit speaker



conditioning. However, these approaches evaluate disentan-
glement indirectly through downstream task performance,
lacking direct measurement of residual speaker information.

Interpretability methods like SHAP [7] and LIME [10]
have seen widespread adoption in NLP and computer vi-
sion but remain underexplored in speech processing. Exist-
ing work includes LIME for phoneme recognition [[11] and
gradient-based analysis for ASR [[12], but interpretability has
not been applied to understand or mitigate speaker entangle-
ment in speech representations.

3. METHODOLOGY

3.1. InterpTRQE-SptME Benchmark

The InterpTRQE-SptME benchmark provides the first direct
quantification of speaker information residuals in speech pre-
trained model encodings. Unlike previous indirect metrics
that rely on downstream task performance, our approach di-
rectly measures the proportion of speaker information in con-
tent embeddings through interpretability analysis.

Feature Extraction. From VCTK audio samples [13],
we extract:

+ Content embeddings: E. = M®(z) € RT*% where
[ is the target layer, 7" is the number of frames, and d.
is the embedding dimension (768 or 1024)

* Speaker embeddings: E, = S(r) € R9, extracted
using a pre-trained ECAPA-TDNN model [14] from
SpeechBrain [15], where ds = 192

Speaker Classification. After time-averaging content
embeddings, we concatenate with speaker embeddings:

Econcat = [II'IG:B.I’IT(E‘C)7 ES] c Rdetds 1

A 4-layer MLP predicts speaker identity from these con-
catenated features:

Z) = f(Econcat) (2)

SHAP Analysis. Gradient SHAP [7] reveals which fea-
tures drive speaker classification. SHAP values ¢; represent
each feature’s contribution to the model output by calculating
the average marginal contribution across all possible feature
coalitions. Our residual metric is the proportion of decision
coming from content embeddings:

S0 gl
Ry = L (3)
SF il + 35 [bao4]

Perfect disentanglement would yield 0%, while high per-
centages indicate speaker information leakage. The SHAP
values follow a distribution where positive values enhance
speaker identification while negative values suppress it, as
shown in Figure 2]

3.2. InterpTF-SptME: Interpretability-based Filtering

SHAP analysis reveals which dimensions encode speakers.
We use this to design two filters:

SHAP Noise Method. Add noise scaled by each dimen-
sion’s speaker contribution:

bo = be — 1o, 4)
O,

Nshap :QBC'E' ‘0'| +M (5)

Eé =FE.+ Nshap (6)

where € ~ N(0,I) is Gaussian noise, o controls the noise
scale (negative values), and p is the offset (set to O in experi-
ments).

SHAP Cropping Method. Suppress dimensions that en-
code speaker information:

0, if ¢; € top-r%
m; = . (7
1, otherwise
E.=E.0(m+a-(1—-m)) (8)

where r is the cropping ratio and « € (0, 1) is the normalized
cutting weight that controls cropping strength.

4. EXPERIMENTS

4.1. Experimental Setup

Our experiments utilize the VCTK corpus [13]], selecting 20
speakers with 7,758 utterances for evaluation. All audio fol-
lows standard preprocessing: 16kHz sampling rate, 16-bit
mono WAV format, with energy normalization to -3dB.

We evaluate seven speech pre-trained models spanning
different architectures and training objectives: HuBERT
BASE [2]] (layer 9), HUBERT LARGE [2] (layers 18 and
21), DPHuUBERT [8] (layer 12), ContentVec [6] (layer 12),
WavLM Base+ [3]] (layer 12), Whisper-ppg (encoder output),
and HuBERT-CH (Chinese fine-tuned, layer 9).

To assess speaker disentanglement comprehensively,
we measure three aspects: timbre residual ratio quantified
through InterpTRQE-SptME, content preservation via CTC
loss using the Hubert-Large-Finetuned ASR model, and sta-
bility through batch-wise standard deviation of SHAP values.

The experimental framework leverages PyTorch and Hug-
gingFace Transformers for model inference. SHAP analysis
uses Captum’s GradientShap implementation with 256 base-
line samples randomly selected from the entire dataset to en-
sure consistency. The speaker classifier consists of a 4-layer
MLP architecture (input—2048—1256—64—20 speakers)
trained with cross-entropy loss using Adam optimizer (learn-
ing rate le-4, batch size 32) for 50 epochs until reach-
ing 100% training accuracy. For ASR evaluation, we em-
ploy the Hubert-Large-Finetuned model from HuggingFace
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Fig. 1: Overview of our framework combining InterpTRQE-SptME benchmark (left) for quantifying speaker residuals and
InterpTF-SptME filtering methods (right) for removing speaker information from content embeddings.

Table 1: Timbre residual quantification results on VCTK
dataset

Model Timbre Residual (%)
HuBERT BASE (L9) 13.72
HuBERT LARGE (L18) 10.58
HuBERT LARGE (L21) 18.65
DPHuBERT (L12) 7.73
ContentVec (L12) 5.20
WavLM Base+ (L12) 9.02
Whisper-ppg (Enc) 7.46
HuBERT-CH (L9) 13.93

(facebook/hubert-large-1s960-ft), which has been fine-tuned
on LibriSpeech 960h. CTC loss computation occurs between
model logits and ground-truth transcriptions from VCTK,
with embedding substitution implemented through forward
hooks at the target layer. Code and experimental scripts are
available at https://github.com/zhuxiaoxuhit/
InterpTRQE-SptME,

4.2. Benchmark Results

Table (1| shows residual speaker information across models.
ContentVec performs best at 5.20%—not surprising given its
design goal. Notice how HuBERT LARGE gets worse in
deeper layers (10.58% at L18 jumps to 18.65% at L21), con-
firming that later layers mix in more speaker traits.

The quantification results reveal distinct patterns across
models. ContentVec achieves the lowest residual at 5.20%
through its explicit disentanglement architecture—voice con-
version removes speaker information from teacher labels
while contrastive loss enforces speaker invariance. Similar

Table 2: Filtering results on HUBERT LARGE layer 21

Method Params CTC Loss Residual
Original - 1.261 18.65%
c=-10 13255.1%) 0%
SHAP Noise o =-0.6 1.273 (+0.9%) 2.21%
oc=-03 1263 (+0.1%) 7.23%
a=0.99 1.297 (+2.8%) 4.65%
SHAPCrop 058 1278 (+13%) 10.07%

low residuals appear in Whisper-ppg (7.46%) and DPHu-
BERT (7.73%), reflecting their content-focused design objec-
tives.

In the middle range, WavLM Base+ shows 9.02% resid-
ual, reflecting its multi-task training that balances content ex-
traction with speaker-dependent tasks. HuBERT LARGE’s
layer 18 exhibits comparable performance at 10.58%, sug-
gesting this intermediate layer maintains reasonable content-
speaker separation.

The highest residuals emerge in models without explicit
disentanglement mechanisms. HuBERT BASE and HuBERT-
CH show 13.72% and 13.93% respectively, while HuBERT
LARGE’s layer 21 reaches 18.65%. This pattern indicates
that clustering-based training inherently preserves speaker
characteristics, with deeper layers progressively accumulat-
ing more speaker-specific information.

4.3. Filtering Results

We tested filtering on HuBERT LARGE layer 21—the worst
performer at 18.65% residual. Table [2] shows both methods
work, with different trade-offs.
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Fig. 2: SHAP value distribution comparison showing speaker
(orange) vs content (blue) contributions. ContentVec shows
significantly reduced speaker contribution.
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Note: For SHAP Crop, « values are normalized by the maxi-
mum content embedding value of 17.1795.

SHAP Noise eliminates speaker residuals entirely at ¢ =
—1.0, though recognition accuracy drops 5.1%. The sweet
spot is 0 = —0.6: just 2.21% residual with negligible recog-
nition loss (+0.9%).

As shown in Figure[3] SHAP Noise exhibits a clear trade-
off: exponential residual reduction with increasing |o|, while
CTC loss rises sharply after 0 = —0.8. The optimal balance
occurs at o = —0.6.

4.4. Analysis and Discussion

Figure2]visualizes the SHAP value distributions for HuBERT
BASE and ContentVec, clearly showing ContentVec’s supe-
rior disentanglement.

The superior performance of SHAP Noise stems from
its treatment of negative SHAP values. Since timbre per-
ception relies on relative frequency patterns and phase re-
lationships, both positive and negative feature contributions
carry speaker information. SHAP Cropping with » = 1 sup-
presses only positive-valued dimensions, effectively ignoring
half the speaker-encoding features. SHAP Noise, by modu-
lating all dimensions proportionally to their absolute SHAP
values, addresses the complete speaker representation. This
comprehensive approach enables SHAP Noise to achieve
near-complete speaker removal (0% residual) compared to
SHAP Cropping’s 4.65% plateau.

Figure [3| illustrates the relationship between filtering
strength and content preservation for SHAP Noise. The
parameter o = —0.6 emerges as an optimal operating point,
reducing speaker residuals by 87.8% while increasing CTC
loss by only 0.93%. This minimal impact on recognition
accuracy demonstrates the method’s practical viability for
real-world applications.

4.5. Layer Sensitivity Analysis

We investigated the speaker information distribution across
HuBERT LARGE layers. Testing layers 18 and 21 revealed

SHAP Noise: ASR CTC Loss and Mean Score by Sigma

ASR CTC Loss
—e— Mean Score

Sigma Value

Fig. 3: Trade-off between speaker residual reduction (Mean
Score) and content preservation (CTC Loss) for SHAP Noise
filtering. o controls noise scale (negative values indicate pro-
portion of SHAP-weighted noise added).

significant differences in speaker residuals and ASR perfor-
mance.

Analysis across HIBERT LARGE layers reveals increas-
ing speaker information accumulation with depth. Layer 18
contains 10.58% speaker residual, which increases to 18.65%
at layer 21. This progression challenges conventional wisdom
about using the deepest layers for content-related tasks.

Examination of the Hubert-Large-Finetuned ASR model
provides additional insight into layer utilization. The model
fine-tunes only layers 18-21 while keeping earlier layers
frozen. Layer 18 embeddings yield a CTC loss of 1.217,
nearly matching the 1.219 achieved with raw audio, whereas
layer 21 degrades to 1.261. These results indicate that the
ASR model primarily exploits layer 18 representations.

Regarding filtering applicability, layers exhibit different
sensitivities to perturbation. Layers 21-23 maintain function-
ality under noise injection, while layers 18-19 collapse with
any modification. This robustness characteristic motivated
our selection of layer 21 for demonstrating the filtering meth-
ods.

5. CONCLUSION

We demonstrated that interpretability methods can both quan-
tify and mitigate speaker entanglement in speech models.
InterpTRQE-SptME directly measures residual speaker infor-
mation using SHAP analysis, while InterpTF-SptME filtering
effectively removes it—reducing residuals from 18.65% to
near zero with minimal recognition loss (<0.93%). The key
insight is using SHAP explanations as actionable feedback
to identify and suppress speaker-encoding dimensions. This
model-agnostic approach requires no retraining and opens
paths for addressing other attributes beyond speaker identity.
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