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Abstract—Bi-objective optimization arises in various applica-
tions, often leading to bilevel optimization (BLO) formulations
with coupled constraints. To solve BLO via gradient-based
approaches, implicit gradient methods resort to the Hessian
inverse to estimate the descent direction for the upper-level vari-
able, which is computationally costly. Penalty-based approaches
offer an attractive alternative by reformulating the problem
as a single-level problem, allowing the use of only first-order
information. However, existing penalty-based methods suffer
from the challenging optimization landscape (large smoothness
constant), which limits the convergence rate to O(ϵ−1.5). This
work revisited the penalty-based formulation that ensures an
O(1)-smooth objective. We achieve this by analyzing the 2nd-
order directional derivative under both non-coupled and coupled
constraints. Consequently, our approach improves the iteration
complexity of the recent Penalty-Based Gradient Descent (PBGD)
method [20] from O(ϵ−1.5) to O(ϵ−1), matching the rate of
gradient descent applied on smooth objectives. Our results apply
to bilevel optimization with general nonlinear coupled constraints,
enhancing the efficiency of penalty-based methods in BLO. The
Appendix of this work, which includes the theoretical details and
experimental results, is available at this GitHub.

Index Terms—bilevel optimization, penalty, first order, Hessian

I. INTRODUCTION

Bi-objective optimization, which seeks to optimize two
potentially conflicting objectives simultaneously, is a funda-
mental problem in decision-making across various domains,
including representation learning [1], reinforcement learning
[21], financial pricing [22], and transportation network [19].

Many bi-objective problems exhibit a hierarchical structure
[1], [21], where one objective seeks to optimize f(x, y), while
the other aims at choosing y as y∗g(x) = argminy g(x, y).
Additionally, many problems [19], [22] impose feasibility
constraints, e.g. (x, y) ∈ X ×Y and c(x, y) ≤ 0. This naturally
lead to a BiLevel Optimization (BLO) formulation:

min
x∈X

ϕ(x) := f(x, y∗g(x)) s.t y∗g(x) := arg min
y∈Y(x)

g(x, y)

where Y(x) := {y ∈ Y : c(x, y) ≤ 0}. (1)

Here, we call f : Rdx × Rdy → R and g : Rdx × Rdy → R
respectively upper-level (UL) and lower-level (LL) objectives;
X ⊆ Rdx is the UL domain constraint; Y(x) ⊆ Rdy is the LL
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constraint including domain constraint Y independent from x
and coupled inequality constraints c : Rdx × Rdy → Rdc .

In this way, the BLO problem (1) solves the bi-objective
problem by finding optimal x∗ over ϕ(x) and its associated
y∗g(x

∗) minimizing g(x, ·) under constraints. Using gradient-
based methods, the key challenge lies in determining a proper
descent direction for x. To address this, Implicit Gradient
Descent (IGD) methods (e.g., [5], [7]–[9], [13]) approximate
∂
∂xy

∗
g(x) via the inversion of hessian ∇yyg(x, y

∗
g(x)), which is

computationally costly and is limited to tackling only Y = Rdy ,
e.g. in [23], [24]. Penalty-based methods, e.g. [11], [14], [15],
[20], [27], offer an alternative by penalizing the LL objective
optimality gap into the UL via a large penalty constant γ:

Hγ(x, y) :=f(x, y) + γ(g(x, y)− min
yg∈Y(x)

g(x, yg)). (2)

Under mild conditions, it was established that the local
solutions to (2) are within O(ϵ)-squared-distance of those
to (1) when choosing γ = Ω(ϵ−0.5) [20]. Moreover, the
value function v(x) = minyg∈Y(x) g(x, yg) is lv,1-smooth,
implying Hγ(x, y) is lH,1 = O(γ)-smooth. This enables
solving (1) via implementing Projected Gradient Descent (PGD)
on (2). However, the choice of γ = Ω(ϵ−0.5) requires the
step size η = O(ϵ0.5) to satisfy condition η ≤ l−1

H,1 in the
PGD algorithm. This dampens the algorithm complexity to
O(η−1ϵ−1) = O(ϵ−1.5). This prompts the question:

(Q): Can we solve the penalty problem (2) with the same
iteration complexity of gradient descent by showing a

formulation with smoothness constant independent of γ?

We answer this affirmatively via decoupling x from y:

Fγ(x) := min
y∈Y(x)

Hγ(x, y) (3)

=γ min
yγ∈Y(x)

( 1

γ
f(x, yγ) + g(x, yγ)

)
︸ ︷︷ ︸

=:vγ(x)

−γ min
yg∈Y(x)

g(x, yg)︸ ︷︷ ︸
=:v(x)

.

To analyze the smoothness constant lF,1 of Fγ(x), we examine
the second order directional derivative D2

dd(F (x)), since lF,1

serves as an upper bounds for ∥D2
dd(F (x))∥. This follows from

the analysis of the value functions vγ(x) and v(x). When the
LL constraint is absent, i.e. Y(x) = Rdy and c(x, y) = 0, a
closed-form Hessian expression of Fγ(x) was concluded [3]
and Fγ(x) was estimated to be O(1)-smooth [4] based on LL
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TABLE I: Comparison of Methods*

Method LL Constraint lF,1 (or lH,1) Complexity
JNT-PBGD y ∈ Y & c(y) ≤ 0 O(γ) Õ(ϵ−1.5)

Prox-F2SA c(y) ≤ 0 O(γ) Õ(ϵ−1.5)

BLOCC y ∈ Y & c(x, y) ≤ 0 O(γ)
Õ(ϵ−1.5)

A(x)y +B(x) ≤ 0 Õ(ϵ−2.5)

F2SA unconstrained O(1) Õ(ϵ−1)

Ours
Y & c(y) ≤ 0

O(1)
Õ(ϵ−1)

Y & c(x, y) ≤ 0 O(ϵ−2)

A(x)y +B(x) ≤ 0 Õ(ϵ−1)

*We compare our results with JNT-PBGD [20], Prox-F2SA [15],
BLOCC [11], and improved analysis of F2SA [3], [4]. The conver-
gence metric is the squared (generalized) gradient norm. We use Õ
in short for O(ln(ϵ−1))

stationarity. However, introducing constraints complicates the
analysis, as ∇yg(x, y

∗
g(x)) = 0 no longer holds, requiring us

to address constraint-induced discontinuities, a challenge not
addressed in existing literature.

A. Contributions

Our work is the first to tackle the challenge in (Q) consider-
ing coupled constraints. We highlight key contributions using
C1), C2), etc. In Section III-A, we begin the analysis from the
non-coupled-constraint case, i.e. Y(x) = {y ∈ Y : c(y) ≤ 0}.
C1) we observe an alternative to the stationary condition
in which the directional derivative of y∗g(x) is orthogonal
to ∇yg(x, y

∗
g(x)). In this way, with the strong convexity

and some Lipschitz conditions of g(x, ·), C2) we bridge the
connection between the 2nd-order directional derivative of
v(x) and vγ(x) in Lemma 3 and therefore conclude that
Fγ(x) in (3) is lF,1-Lipschitz-smooth with lF,1 = O(1). In
Section III-B, we revisited an alternating version of Penalty-
Based Gradient Descent (PBGD) method for minx∈X Fγ(x),
ALT-PBGD in Algorithm 1, which alternates between min-
imizing H(x, y) over y ∈ Y and Fγ(x) over x ∈ X . C3)
ALT-PBGD achieves Õ(ϵ−1) complexity, with its outer loop
matching the complexity of gradient descent. It improves the
Õ(ϵ−1.5) complexity of JNT-PBGD method jointly minimizing
Hγ(x, y) over (x, y) ∈ X × Y in existing literature [20]. C4)
Section IV extends the results to the coupled constrained case
Y(x) = {y ∈ Y : c(x, y) ≤ 0}. In this way, we establish O(1)-
smoothness for Fγ(x) and improve the iteration complexity of
BLOCC, a PBGD method for BLO with Coupled Constraints
[11], by O(ϵ−0.5). Numerical experiments are provided in
Appendix [10].

B. Prior art

BLO has a rich history, with early work dating back to [2].
Recent advances focus on efficient gradient-based methods
with finite-time guarantees. IGD methods, introduced by [18],
approximate the hypergradient ∂

∂xy
∗
g(x) using the implicit

function theorem, primarily under the strongly convex LL
assumption [5], [7]–[9], [13]. However, IGD methods are
computationally expensive due to the need for second order
calculation. Alternatively, Penalty-Based methods reformulate
BLO as a single-level problem with penalty terms, which
avoids Hessian computations and is fully first-order. Dating

back to [26], these methods have regained significant popularity
recently [14], [16], [17], [20], [27]. Moreover, motivated by real-
world applications, recent research has increasingly focused on
BLO problems with LL constraints [11], [12], [15], [20], [23]–
[25], and penalty-based methods [11], [24], demonstrate their
effectiveness in handling both function constraints c(x, y) ≤ 0
and domain constraints y ∈ Y with low algorithm complexity.

When applying penalty-based methods, the smoothness of
the penalty reformulation is crucial, as the step size is bounded
by the inverse of the smoothness constant. For non-coupled
LL constraints (e.g., Y or c(y) ≤ 0), [14], [20] achieve an
O(ϵ−0.5)-smoothness for the penalty reformulation. Similarly,
[11] extends this to coupled constraints c(x, y) ≤ 0 and
domain constraints y ∈ Y , leading to a step size bound of
O(ϵ0.5), which in turn dampens iteration complexity. [15]
derives a closed-form expression for ∇2v(x) under c(y) ≤ 0,
but the smoothness constant remains at O(γ). For unconstrained
BLO, [4] achieves O(1) smoothness via decoupled penalty
reformulation Fγ(x). However, results for constrained LL
problems, especially with domain Y and coupled inequality
constraints c(x, y) ≤ 0, remain limited. Table I compares prior
works on penalty methods and smoothness analysis.

II. PRELIMINARY OF THE PENALTY REFORMULATION
This section explores preliminary properties for penalty refor-

mulation Fγ(x). Before proceeding, we outline the assumptions,
with definitions provided in Appendix [10, Sec. II].

Assumption 1 (Upper level). Assume differentiable f : Rdx ×
Rdy → R is (1) lf,0-Lipschitz in y ∈ Y , (2) lf,1-smooth in
(x, y) ∈ X × Y , (3) locally-Lipschitz in x ∈ X .

Assumption 2 (Lower level). Assume differentiable g : Rdx ×
Rdy → R is (1) µg-strongly-convex in y ∈ Y , (2) lg,1-smooth
in (x, y) ∈ X × Y , (3) locally-Lipschitz in x ∈ X .

Assumption 3 (Constraints). Assume (1) X ⊆ Rdx and
Y ⊆ Rdy are closed and convex; (2) differentiable c : Rdx ×
Rdy → Rdc is convex in y ∈ Y , lc,1-smooth in (x, y) ∈ X ×Y ,
satisfies the Linear Constraint Qualification (LICQ) condition
in y ∈ Y at optimal points, (3) and locally-Lipschitz in x.

The differentiability and Lipschitz continuity conditions for
f , g, and c in Assumptions 1, 2, and 3 are standard [5], [7]–
[9], [11], [14]. The strong convexity of the LL problem is
conventional [3], [5], [7], [11] and still presents challenges
due to the imposed constraints. Moreover, assuming c(x, y)
convex in y is mild and traditional [11], [12], [23], [25]. The
convexity and closure of X and Y are standard, and the LICQ
is a common assumption in constrained BLO [11], [15], [24].

With these conditions, Fγ(x) is a good approximation to
ϕ(x) in (1) with distance controlled by γ−1 and solving Fγ(x)
is equivalent to solving to find ϵ-suboptimal ϕ(x).

Lemma 1. Suppose Assumption 1.1-2, 2.1-2, and 3 hold. The
ϵ-suboptimal local solutions in distance square metric for ϵ-
approximation problem of (1):

min
x∈X ,y∈Y(x)

f(x, y) s.t. ∥y − y∗g(x)∥2 ≤ ϵ, (4)



are ϵ-suboptimal local solutions for minx∈X Fγ(x) in (3) with
γ = O(ϵ−0.5) and γ >

lf,1
αg

. Additionally, there is

∥y∗g(x)− y∗γ(x)∥2 ≤ O(lf,0µ
−1
g γ−1), (5)

where y∗g(x) is in (1), and

y∗γ(x) := arg min
y∈Y(x)

γ−1f(x, y) + g(x, y). (6)

The proof of Lemma 1 follows from [11, Theorem 1] and
[20] directly. Here, g is strongly convex in y and f is smooth,
and γ−1f + g is strongly convex in y when γ ≥ lf,1

µg
as lf,1-

smoothness ensures a lower bound for negative curvature of
f . Moreover, Fγ(x) = γ(vγ(x) − v(x)) features favorable
properties such as differentiability and smoothness, as do the
value functions.

Lemma 2 (Derivative of v(x) [11, Lemma 2]). Suppose
Assumption 1, 2, 3 hold. For Y(x) = {y ∈ Y : c(x, y) ≤ 0},
the value function v(x) = miny∈Y(x) g(x, y) is differentiable:

∇v(x) = ∇xg(x, y
∗
g(x)) + ⟨λ∗

g(x),∇xc(x, y
∗
g(x))⟩, (7)

where λ∗
g(x) is the unique Lagrangian multiplier.

The lemma 2 is the cornerstone of the implementation of
a gradient descent-based algorithm to solve the reformulation
Fγ(x) or Hγ(x), such as in [11], [14], [20].

III. IMPROVED CONVERGENCE RATE UNDER
NON-COUPLED CONSTRAINT

In this section, we start by considering the non-coupled
constraint Y(x) = {y ∈ Y : c(y) ≤ 0} independent from x.
Section III-A provides a dedicated analysis of the smoothness
of Fγ(x). In Section III-B, we revisited ALT-PBGD and
demonstrated that it is an optimal algorithm that matches the
convergence complexity of the gradient descent.

A. Tighter smoothness estimate of Fγ(x)

Existing literature [15], [20] investigates the joint minimiza-
tion of (x, y) for Hγ(x, y) in (2), whose smoothness modulus
is of order O(γ) [20]. This leads to a prior estimate of the
smoothness modulus for Fγ(x) as lF,1 = O(γ). However,
empirical evidence, e.g. Example 1, shows that although
∇xH(x, y) will be scaled up by γ, ∇Fγ(x) remains at a
constant value. As in Figure 1, larger γ results in steeper
gradients for ∇xH(x, y) while it hardly affects ∇Fγ(x).

Example 1. With X = Y(x) = [0, 3], consider the BLO
problem in (1) with the objectives as follows

f(x, y) =
e−y+1

2 + cos(4x)
+

1

2
ln
(
(4x− 2)2 + 1

)
+ x2

g(x, y) =2(y − x)2 +
x

2
sin2(x+ y).

This motivates a re-examination of the smoothness properties
of Fγ(x). To analyze the smoothness constant lF,1, we consider
the second-order directional derivative D2

dd(F (x)), as lF,1 pro-
vides an upper bound for ∥D2

dd(F (x))∥. Specifically, recalling
that Fγ(x) = γ (vγ(x)− v(x)), as given in (3), we are led to

analyze the second-order properties of the value functions. In
the unconstrained case, when assuming LL strongly-convexity,
the lower level stationarity ∇yg(x, y

∗
g(x)) = 0 gives

0 = lim
r↓0

1

r

(
∇yg(x+ rd, y∗g(x+ rd))−∇yg(x, y

∗
g(x)))

)
=∇xyg(x, y

∗
g(x))

⊤d+∇yyg(x, y
∗
g(x))

∂

∂x
y∗g(x)d (8)

by Taylor’s expansion. Therefore, prior arts e.g. [5], [7] obtain
∂

∂x
y∗g(x) = ∇yyg(x, y

∗
g(x))

−1∇yxg(x, y
∗
g(x)). (9)

This enables finding ∇2v(x) and its counterpart ∇2vγ(x)
such as in [4]. However, when involving the LL constraint,
∇yg(x, y

∗
g(x)) = 0 does not hold in general. We address this by

observing an alternative. Under Y(x) = {y ∈ Y : c(y) ≤ 0},〈
∇yg(x, y

∗
g(x)), lim

r↓0

y∗g(x+ rd)− y∗g(x)

r

〉
= 0 (10)

holds for all unit direction d ∈ Rdx , as summarized in Lemma
6 in Appendix [10, Sec. III-A]. This enables the analysis of
the second-order directional derivative of value functions by
constructing an alternative to (8).

Lemma 3. Consider Y(x) = {y ∈ Y : c(y) ≤ 0}. Suppose
Assumption 1.1-2, 2.1-2, 3 hold. Fix any δ > 0. there exists
some finite γ∗ such that for any x and unit direction d ∈ Rdx ,
there exists an index set I ⊆ [dy] such that the second-order
directional derivatives of v(x) and vγ(x) are

D2
dd(v(x)) = d⊤

(
A(x)−B(x)

[
C(x)−1

[I,I]B(x)[:,I]
⊤

0

])
d+O(δ),

D2
dd(vγ(x)) = d⊤

(
Aγ(x)−Bγ(x)

[
Cγ(x)

−1
[I,I]Bγ(x)[:,I]

⊤

0

])
d+O(δ)

(11)

for all γ > γ∗ for the same I , where A(x) = ∇xxg(x, y
∗
γ(x)),

B(x) = ∇xyg(x, y
∗
γ(x)), C(x) = ∇yyg(x, y

∗
g(x)),

Aγ(x) = γ−1∇xxf(x, yγ(x)) +∇xxg(x, y
∗
γ(x)),

Bγ(x) = γ−1∇xyf(x, yγ(x)) +∇xyg(x, y
∗
γ(x)),

Cγ(x) = γ−1∇yyf(x, yγ(x)) +∇yyg(x, y
∗
γ(x)).

The proof of Lemma 3 is in Appendix [10, Sec. III-A].
Building on this, we seek to provide a tighter estimate for lF,1

with the following conventional assumption [4], [14].

Assumption 4. Assume f , g are twice differentiable on X ×Y ,
and ∇2f , ∇2g are respectively lf,2, lg,2-Lipschitz in y ∈ Y .

Theorem 1. Suppose Y(x) = {y ∈ Y : c(y) ≤ 0}, and
Assumption 1.1-2, 2.1-2, 3, 4 hold. Fix any δ > 0, there exists
some finite γ∗ > 0 such that for any x and unit direction
d ∈ Rdx , the directional derivative

∥D2
dd(Fγ(x))∥ ≤ lF,1 = C1C0 +

1

γ
C2C

2
0 +

1

γ2
C3C

3
0 +O(δ),

for all γ > γ∗, where C1, C2, C3, C4 = O(1).

The proof for Theorem 1 is in Appendix [10, III-B]. In other
word, the smoothness lF,1 = O(1) is not scalable with γ. This
is consistent with the observation in Figure 1.



Algorithm 1 ALT-PBGD

1: inputs: initial point x0; stepsize η; coun-
ters T ; inner Min Solver.

2: for t = 0, 1, . . . , T − 1 do
3: update ygt as (12) by Min Solver.
4: update yγt as (13) by Min Solver.
5: update xt+1 = ProjX

(
xt − ηgt

)
where gt is in (14).

6: end for
7: outputs: (xT , y

g
T )

Algorithm 2 BLOCC [11]

1: inputs: initial point x0; stepsize η; counters
T ; inner MaxMin Solver.

2: for t = 0, 1, . . . , T − 1 do
3: update (λg

t , y
g
t ) as (16) by MaxMin Solver.

4: update (λg
t , y

g
t ) as (15) by MaxMin Solver.

5: update xt+1 = ProjX
(
xt − ηgt

)
where gt

is in (17).
6: end for
7: outputs: (xT , y

γ
T )

0
1y

0.0 0.5 1.0 1.5
x

-100

0

100

= 15
= 10
= 5

Fig. 1: ∇xHγ(x, y) for
Example 1 with differ-
ent γ. The lines repre-
sent ∇Fγ(x), showing its
smaller variations.

B. ALT-PBGD: an improved PBGD method

In this section, we revisit the PBGD [20] method and
demonstrate the effectiveness of its alternate version, ALT-
PBGD, which updates y and x sequentially rather than jointly
optimizing over (x, y). At each iteration t, ALT-PBGD updates

ygt ≈ arg min
y∈Y(x)

g(x, y), (12)

yγt ≈ arg min
y∈Y(x)

γ−1f(x, y) + g(x, y) (13)

to ϵ-suboptimal points in distance metrics. Following Lemma
2 where the Lagrangian term is not involved in this setting, we
can access the estimate of ∇Fγ(xt) = γ(∇vγ(x)− v(x)) as

gt = ∇xf(x, y
γ
t ) + γ(∇xg(x, y

γ
t )−∇xg(x, y

g
t )), (14)

and update xt+1 = ProjX
(
xt−ηgt

)
with η ≤ l−1

F,1. We outline
the oracle in Algorithm 1 and present the complexity analysis
in Proposition 2 with proof in Appendix [10, III-C].

Proposition 2. Consider Y(x) = {y ∈ Y : c(y) ≤ 0}. Suppose
Assumption 1, 2, 3, 4 hold. For γ ≥ lf,1

µg
, Algorithm 1 with

η = O(1) ≤ l−1
F,1 is achieved for O(ϵ−1) outer-loop complexity

for ∥Gη(x)∥2 < ϵ, where Gη(x) =
x−ProjX (x−η∇Fγ(x))

η .

The generalized gradient metric, Gη(x), is common in
constrained problems [5], [6], [15]. This Proposition enables
setting large γ, e.g. γ = O(ϵ−0.5) to bridge the equiva-
lence in (4). Additionally, when PGD is chosen as the Min
Solver, Algorithm 1 is of O(ϵ−1 ln(ϵ−1)) = Õ(ϵ−1) overall
complexity, as PGD converges linearly. This matches the
optimal complexity of PGD for single-level optimization. This
result highlights the advantage of minimizing Fγ(x) over
jointly minimizing Hγ(x, y) in JNT-PBGD methods [20], since
Hγ(x, y) has a smoothness modulus lH,1 = O(γ), requiring
η = O(ϵ0.5) and leading to Õ(ϵ−1.5) complexity, as also
empirically corroborated in Figure 2.

IV. EXTENSION TO COUPLED CONSTRAINTS SETTING

This section addresses the general BLO problem with cou-
pled inequality constraints Y(x) = {y ∈ Y : c(x, y) ≤ 0} in
(1). As illustrated in Lemma 2, in the coupled constraint setting,
∇v(x) can be achieved by finding the solution y∗g(x) and the
corresponding unique Lagrangian multiplier λ∗

g(x). Therefore,
the PBGD algorithm for solving Bi-Level Optimization with

Coupled Constraint, BLOCC [11], was developed similarly to
ALT-PBGD. At each iteration t, find the ϵ-suboptimal solutions

(λg
t+1, y

g
t+1) ≈ arg max

λ∈Rdc
+

min
y∈Y

g(xt, y) + ⟨λ, c(xt, y)⟩︸ ︷︷ ︸
=:Lg(xt,y,λ)

, (15)

(λγ
t+1, y

γ
t+1) ≈ arg max

λ∈Rdc
+

min
y∈Y

1

γ
f(xt, y) + Lg(xt, y, λ)︸ ︷︷ ︸

=:Lγ(xt,y,λ)

(16)

where Lg(x, y, λ), and Lγ(x, y, λ) are the Lagrangians for the
two constrained problems in Fγ(x) in (3). By Lemma 2, the
estimate of ∇Fγ(xt) can be achieved by finding ∇v(xt) and
∇vγ(xt) through Lg and Lγ , i.e.

gt =γ∇xLγ(xt, y
γ
t , λ

γ
t )− γ∇xLg(xt, y

g
t , λ

g
t ). (17)

Then, it updates xt+1 = ProjX (xt − ηgt) where step size
η ≤ l−1

F,1. The algorithm is summarized in Algorithm 2.
[11] estimates the smoothness modulus of Fγ(x) as lF,1 =

O(γ), implying a choice η = O(γ−1). However, this estimate
is not tight, as in the non-CC case. To address this, we provide
a generalized version of Lemma 3 for the coupled constrained
setting Y(x) = {y ∈ Y : c(x, y) ≤ 0} in Lemma 10 in
Appendix [10, IV-A] under mild additional Assumption 5.

Assumption 5. The domain Y is smooth on the boundary and
c is twice differentiable with ∇2c being lc,1-Lipschitz y.

In this way, the generalized version of Lemma 3 for the
coupled constrained setting Y(x) = {y ∈ Y : c(x, y) ≤ 0} can
be established, as per Lemma 10 in Appendix [10, IV-A]. This
similarly help in concluding O(1)-smoothness of Fγ(x).

Theorem 3. Consider Y(x) = {y ∈ Y : c(x, y) ≤ 0}. Suppose
Assumption 1, 2, 3, 4, 5 hold. Then, there exists finite γ∗ > 0
such that Fγ(x) is lF,1 = O(1)-smooth for all γ > γ∗.

The proof for Theorem 3 follows directly from Lemma 10
and is presented at the end of Appendix [10, IV-A]. This is a
generalization to Theorem 1. It allows for η = O(1) stepsize
choice of running BLOCC in the coupled constraint setting
and results in a reduced complexity. As corroborated in Figure
3, increasing γ does not require decrease in η.

Proposition 4. Suppose all assumptions in Theorem 3 hold.
For γ ≥ lf,1

µg
, Algorithm 1 with η = O(1) ≤ l−1

F,1 is achieved
for O(ϵ−1) outer-loop complexity for ∥Gη(x)∥2 < ϵ.



0.0 0.1 0.2 0.3 0.4
Iterations of xt

0.0

0.1

0.2

0.3

Ite
ra

tio
ns

 o
f y

t
ALT-PBGD, = 0.01
ALT-PBGD, = 0.1
JNT-PBGD, = 0.01
JNT-PBGD, = 0.1
(x*,y*)

Fig. 2: Iterations of solving
Example 1 via ALT-PBGD
(Algorithm 1) and Joint-(JNT-
)PBGD on minx,y Hγ(x, y)
[20, V-PBGD].
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Fig. 3: Iterations of solv-
ing Example 2 in Appendix
[10] via BLOCC (Algorithm
2 [11]) on Fγ(x) with γ =
10, 100 and varying step-sizes.

Remark 1. The MaxMin Solver can be the accelerated version
of Algorithm 2 in [11], therefore achieving O(ϵ−2) overall
complexity. For Y = Rdy and c(x, y) = A(x)y +B(x) linear
in y, the MaxMin Solver can be the fully single-loop version
of Algorithm 2 in [11], achieving Õ(ϵ−1) complexity.

The proof of Proposition 4 follows directly from [11], hence
omitted. Here, η = O(1) choice leads to improved rate T =
O(ϵ−1), compared with T = O(γϵ−1) = (ϵ−1.5) in [11].

V. CONCLUSION

This work tackles BLO with coupled constraints by using a
penalty-based formulation that decouples UL and LL variables.
By analyzing the Hessians of associated value functions,
we establish that the reformulated objective maintains O(1)-
smoothness under both non-coupled domain constraints and
coupled inequality constraints. This enables to establish an
improved iteration complexity of O(ϵ−1) for the ALT-PBGD
method, matching the optimal rate of standard gradient descent.
Our results extend to BLO with general nonlinear constraints,
offering a more efficient and scalable framework for solving
bi-objective optimization problems. We provide numerical
experiments in Appendix [10]. This advancement significantly
corroborates the practicality of penalty-based methods in
applications requiring constrained BLO.
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