My CAMSAP 2019 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)
Click on the icon to view the manuscript on IEEE XPlore in the IEEE CAMSAP 2019 Open Preview.

Clicking on the Add button next to a paper title will add that paper to your custom schedule.
Clicking on the Remove button next to a paper will remove that paper from your custom schedule.

TM1: Learning over Graphs

Session Type: Lecture
Time: Tuesday, December 17, 10:20 - 12:20
Location: Salle Fort Royal
Session Chairs: Santiago Segarra, Rice University and Mario Coutino, TU Delft
 
  TM1.1: LEARNING SPARSE HYPERGRAPHS FROM DYADIC RELATIONAL DATA
         Mario Coutino; TU Delft
         Sundeep Chepuri; Indian Institute of Science
         Geert Leus; TU Delft
 
  TM1.2: GRAPH NEURAL NETWORKS FOR PREDICTING PROTEIN FUNCTIONS
         Vassilis N. Ioannidis; University of Minnesota
         Antonio G. Marques; King Juan Carlos University
         Georgios B. Giannakis; University of Minnesota
 
  TM1.3: ONLINE NETWORK TOPOLOGY INFERENCE WITH PARTIAL CONNECTIVITY INFORMATION
         Rasoul Shafipour; University of Rochester
         Gonzalo Mateos; University of Rochester
 
  TM1.4: AN UNDERPARAMETRIZED DEEP DECODER ARCHITECTURE FOR GRAPH SIGNALS
         Samuel Rey; King Juan Carlos University
         Antonio G. Marques; King Juan Carlos University
         Santiago Segarra; Rice University
 
  TM1.5: A BLOCK COORDINATE DESCENT ALGORITHM FOR SPARSE GAUSSIAN GRAPHICAL MODEL INFERENCE WITH LAPLACIAN CONSTRAINTS
         Tianyi Liu; Technische Universität Darmstadt
         Minh Trinh Hoang; Technische Universität Darmstadt
         Yang Yang; Fraunhofer
         Marius Pesavento; Technische Universität Darmstadt
 
  TM1.6: SCALABLE AND ADAPTIVE KNN FOR REGRESSION OVER GRAPHS
         Seth Barrash; University of Minnesota, Twin Cities
         Yanning Shen; University of California, Irvine
         Georgios B. Giannakis; University of Minnesota