My CAMSAP 2019 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)
Click on the icon to view the manuscript on IEEE XPlore in the IEEE CAMSAP 2019 Open Preview.

Clicking on the Add button next to a paper title will add that paper to your custom schedule.
Clicking on the Remove button next to a paper will remove that paper from your custom schedule.

MA1: Distributed Learning and Optimization over Networks

Session Type: Lecture
Time: Monday, December 16, 17:00 - 18:40
Location: Salle Fort Royal
Session Chair: Stefan Vlaski, École Polytechnique Fédérale de Lausanne
 
  MA1.1: DISTRIBUTED CHANGE DETECTION IN STREAMING GRAPH SIGNALS
         André Ferrari; Université Côte d'Azur
         Cédric Richard; Université Côte d'Azur
         Louis Verduci; Université Côte d'Azur
 
  MA1.2: POLYNOMIAL ESCAPE-TIME FROM SADDLE POINTS IN DISTRIBUTED NON-CONVEX OPTIMIZATION
         Stefan Vlaski; École Polytechnique Fédérale de Lausanne
         Ali Sayed; École Polytechnique Fédérale de Lausanne
 
  MA1.3: DISTRIBUTED ROBUST BAYESIAN CLUSTER ENUMERATION CRITERION FOR UNSUPERVISED LEARNING
         Yani Zhang; Technische Universität Darmstadt
         Freweyni K. Teklehaymanot; Technische Universität Darmstadt
         Michael Muma; Technische Universität Darmstadt
         Abdelhak M. Zoubir; Technische Universität Darmstadt
 
  MA1.4: DISTRIBUTED GLOBAL OPTIMIZATION BY ANNEALING
         Brian Swenson; Princeton University
         Soummya Kar; Carnegie Mellon University
         H. Vincent Poor; Princeton University
         Jose M. F. Moura; Carnegie Mellon University
 
  MA1.5: PAC LEARNING FROM DISTRIBUTED DATA IN THE PRESENCE OF MALICIOUS NODES
         Zhixiong Yang; Rutgers University–New Brunswick
         Waheed Bajwa; Rutgers University–New Brunswick