Technical Program

TM1: Learning over Graphs

Session Type: Lecture
Time: Tuesday, December 17, 10:20 - 12:20
Location: Salle Fort Royal
Session Chairs: Santiago Segarra, Rice University and Mario Coutino, TU Delft
 
TM1.1: LEARNING SPARSE HYPERGRAPHS FROM DYADIC RELATIONAL DATA
Mario Coutino, TU Delft, Netherlands; Sundeep Chepuri, Indian Institute of Science, India; Geert Leus, TU Delft, Netherlands
 
TM1.2: GRAPH NEURAL NETWORKS FOR PREDICTING PROTEIN FUNCTIONS
Vassilis N. Ioannidis, University of Minnesota, United States; Antonio G. Marques, King Juan Carlos University, Spain; Georgios B. Giannakis, University of Minnesota, United States
 
TM1.3: ONLINE NETWORK TOPOLOGY INFERENCE WITH PARTIAL CONNECTIVITY INFORMATION
Rasoul Shafipour, Gonzalo Mateos, University of Rochester, United States
 
TM1.4: AN UNDERPARAMETRIZED DEEP DECODER ARCHITECTURE FOR GRAPH SIGNALS
Samuel Rey, Antonio G. Marques, King Juan Carlos University, Spain; Santiago Segarra, Rice University, United States
 
TM1.5: A BLOCK COORDINATE DESCENT ALGORITHM FOR SPARSE GAUSSIAN GRAPHICAL MODEL INFERENCE WITH LAPLACIAN CONSTRAINTS
Tianyi Liu, Minh Trinh Hoang, Technische Universität Darmstadt, Germany; Yang Yang, Fraunhofer, Germany; Marius Pesavento, Technische Universität Darmstadt, Germany
 
TM1.6: SCALABLE AND ADAPTIVE KNN FOR REGRESSION OVER GRAPHS
Seth Barrash, University of Minnesota, Twin Cities, United States; Yanning Shen, University of California, Irvine, United States; Georgios B. Giannakis, University of Minnesota, United States